Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2842 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{5}M_{6}$ | 0.6706 | 0.8484 | 0.7904 | [M:[0.7464, 0.7935, 0.6948, 0.8451, 1.1549, 0.8451], q:[0.8569, 0.3967], qb:[0.4484, 0.7582], phi:[0.385]] | [M:[[2, 10], [-6, -6], [-7, 7], [3, -3], [-3, 3], [3, -3]], q:[[1, -7], [-3, -3]], qb:[[6, 0], [0, 6]], phi:[[-1, 1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{6}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{6}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$ | -2 | t^2.084 + t^2.239 + t^2.31 + t^2.38 + 2*t^2.535 + t^3.535 + t^3.69 + t^3.845 + t^4.169 + t^4.324 + t^4.394 + t^4.465 + t^4.478 + t^4.549 + 4*t^4.62 + t^4.69 + t^4.761 + 2*t^4.775 + 3*t^4.845 + 2*t^4.916 + 3*t^5.071 + t^5.62 + t^5.775 + t^5.916 + t^5.929 - 2*t^6. + 2*t^6.071 + t^6.084 + 2*t^6.225 + t^6.253 + 2*t^6.38 + t^6.408 + t^6.478 + t^6.549 + t^6.563 + t^6.633 + 4*t^6.704 + t^6.718 + t^6.775 + t^6.788 + t^6.845 + 4*t^6.859 + 4*t^6.929 + 3*t^7. + 2*t^7.014 + 2*t^7.071 + 2*t^7.084 + t^7.141 + 5*t^7.155 + 2*t^7.225 + 2*t^7.296 + t^7.31 + 3*t^7.38 + 2*t^7.451 + 3*t^7.606 + t^7.69 + t^7.704 + t^7.859 + t^8. + t^8.014 - 3*t^8.084 + 2*t^8.155 + t^8.169 - 3*t^8.239 + t^8.296 - t^8.31 + t^8.324 + t^8.337 - 3*t^8.38 + 2*t^8.451 + t^8.465 + t^8.492 - 6*t^8.535 + t^8.563 + 2*t^8.606 + 2*t^8.62 + t^8.633 + t^8.647 + t^8.718 + 2*t^8.761 + 4*t^8.788 + t^8.802 + t^8.859 + t^8.873 + 3*t^8.916 + t^8.929 + 4*t^8.943 + t^8.957 - t^4.155/y - t^6.239/y - t^6.394/y - t^6.465/y - t^6.535/y - t^6.69/y + t^7.324/y + t^7.394/y + t^7.465/y + t^7.549/y + (4*t^7.62)/y + t^7.69/y + (3*t^7.775)/y + (3*t^7.845)/y + (3*t^7.916)/y + (2*t^8.071)/y - t^8.324/y - t^8.478/y - t^8.549/y - t^8.633/y - t^8.704/y - t^8.775/y + t^8.929/y - t^4.155*y - t^6.239*y - t^6.394*y - t^6.465*y - t^6.535*y - t^6.69*y + t^7.324*y + t^7.394*y + t^7.465*y + t^7.549*y + 4*t^7.62*y + t^7.69*y + 3*t^7.775*y + 3*t^7.845*y + 3*t^7.916*y + 2*t^8.071*y - t^8.324*y - t^8.478*y - t^8.549*y - t^8.633*y - t^8.704*y - t^8.775*y + t^8.929*y | (g2^7*t^2.084)/g1^7 + g1^2*g2^10*t^2.239 + (g2^2*t^2.31)/g1^2 + t^2.38/(g1^6*g2^6) + (2*g1^3*t^2.535)/g2^3 + t^3.535/(g1^7*g2^5) + (g1^2*t^3.69)/g2^2 + g1^11*g2*t^3.845 + (g2^14*t^4.169)/g1^14 + (g2^17*t^4.324)/g1^5 + (g2^9*t^4.394)/g1^9 + (g2*t^4.465)/g1^13 + g1^4*g2^20*t^4.478 + g2^12*t^4.549 + (4*g2^4*t^4.62)/g1^4 + t^4.69/(g1^8*g2^4) + t^4.761/(g1^12*g2^12) + 2*g1^5*g2^7*t^4.775 + (3*g1*t^4.845)/g2 + (2*t^4.916)/(g1^3*g2^9) + (3*g1^6*t^5.071)/g2^6 + (g2^2*t^5.62)/g1^14 + (g2^5*t^5.775)/g1^5 + t^5.916/(g1^13*g2^11) + g1^4*g2^8*t^5.929 - 2*t^6. + (2*t^6.071)/(g1^4*g2^8) + g1^13*g2^11*t^6.084 + (2*g1^5*t^6.225)/g2^5 + (g2^21*t^6.253)/g1^21 + (2*g1^14*t^6.38)/g2^2 + (g2^24*t^6.408)/g1^12 + (g2^16*t^6.478)/g1^16 + (g2^8*t^6.549)/g1^20 + (g2^27*t^6.563)/g1^3 + (g2^19*t^6.633)/g1^7 + (4*g2^11*t^6.704)/g1^11 + g1^6*g2^30*t^6.718 + (g2^3*t^6.775)/g1^15 + g1^2*g2^22*t^6.788 + t^6.845/(g1^19*g2^5) + (4*g2^14*t^6.859)/g1^2 + (4*g2^6*t^6.929)/g1^6 + (3*t^7.)/(g1^10*g2^2) + 2*g1^7*g2^17*t^7.014 + (2*t^7.071)/(g1^14*g2^10) + 2*g1^3*g2^9*t^7.084 + t^7.141/(g1^18*g2^18) + (5*g2*t^7.155)/g1 + (2*t^7.225)/(g1^5*g2^7) + (2*t^7.296)/(g1^9*g2^15) + g1^8*g2^4*t^7.31 + (3*g1^4*t^7.38)/g2^4 + (2*t^7.451)/g2^12 + (3*g1^9*t^7.606)/g2^9 + g1^22*g2^2*t^7.69 + (g2^9*t^7.704)/g1^21 + (g2^12*t^7.859)/g1^12 + t^8./(g1^20*g2^4) + (g2^15*t^8.014)/g1^3 - (3*g2^7*t^8.084)/g1^7 + (2*t^8.155)/(g1^11*g2) + g1^6*g2^18*t^8.169 - 3*g1^2*g2^10*t^8.239 + t^8.296/(g1^19*g2^17) - (g2^2*t^8.31)/g1^2 + g1^15*g2^21*t^8.324 + (g2^28*t^8.337)/g1^28 - (3*t^8.38)/(g1^6*g2^6) + (2*t^8.451)/(g1^10*g2^14) + g1^7*g2^5*t^8.465 + (g2^31*t^8.492)/g1^19 - (6*g1^3*t^8.535)/g2^3 + (g2^23*t^8.563)/g1^23 + (2*t^8.606)/(g1*g2^11) + 2*g1^16*g2^8*t^8.62 + (g2^15*t^8.633)/g1^27 + (g2^34*t^8.647)/g1^10 + (g2^26*t^8.718)/g1^14 + (2*g1^8*t^8.761)/g2^8 + (4*g2^18*t^8.788)/g1^18 + (g2^37*t^8.802)/g1 + (g2^10*t^8.859)/g1^22 + (g2^29*t^8.873)/g1^5 + (3*g1^17*t^8.916)/g2^5 + (g2^2*t^8.929)/g1^26 + (4*g2^21*t^8.943)/g1^9 + g1^8*g2^40*t^8.957 - (g2*t^4.155)/(g1*y) - (g2^8*t^6.239)/(g1^8*y) - (g1*g2^11*t^6.394)/y - (g2^3*t^6.465)/(g1^3*y) - t^6.535/(g1^7*g2^5*y) - (g1^2*t^6.69)/(g2^2*y) + (g2^17*t^7.324)/(g1^5*y) + (g2^9*t^7.394)/(g1^9*y) + (g2*t^7.465)/(g1^13*y) + (g2^12*t^7.549)/y + (4*g2^4*t^7.62)/(g1^4*y) + t^7.69/(g1^8*g2^4*y) + (3*g1^5*g2^7*t^7.775)/y + (3*g1*t^7.845)/(g2*y) + (3*t^7.916)/(g1^3*g2^9*y) + (2*g1^6*t^8.071)/(g2^6*y) - (g2^15*t^8.324)/(g1^15*y) - (g2^18*t^8.478)/(g1^6*y) - (g2^10*t^8.549)/(g1^10*y) - (g1^3*g2^21*t^8.633)/y - (g2^13*t^8.704)/(g1*y) - (g2^5*t^8.775)/(g1^5*y) + (g1^4*g2^8*t^8.929)/y - (g2*t^4.155*y)/g1 - (g2^8*t^6.239*y)/g1^8 - g1*g2^11*t^6.394*y - (g2^3*t^6.465*y)/g1^3 - (t^6.535*y)/(g1^7*g2^5) - (g1^2*t^6.69*y)/g2^2 + (g2^17*t^7.324*y)/g1^5 + (g2^9*t^7.394*y)/g1^9 + (g2*t^7.465*y)/g1^13 + g2^12*t^7.549*y + (4*g2^4*t^7.62*y)/g1^4 + (t^7.69*y)/(g1^8*g2^4) + 3*g1^5*g2^7*t^7.775*y + (3*g1*t^7.845*y)/g2 + (3*t^7.916*y)/(g1^3*g2^9) + (2*g1^6*t^8.071*y)/g2^6 - (g2^15*t^8.324*y)/g1^15 - (g2^18*t^8.478*y)/g1^6 - (g2^10*t^8.549*y)/g1^10 - g1^3*g2^21*t^8.633*y - (g2^13*t^8.704*y)/g1 - (g2^5*t^8.775*y)/g1^5 + g1^4*g2^8*t^8.929*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
3395 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{7}\phi_{1}q_{2}\tilde{q}_{1}$ | 0.6888 | 0.8814 | 0.7814 | [M:[0.7416, 0.7927, 0.685, 0.8493, 1.1507, 0.8493, 0.7672], q:[0.862, 0.3964], qb:[0.4529, 0.7544], phi:[0.3836]] | t^2.055 + t^2.225 + 2*t^2.301 + t^2.378 + 2*t^2.548 + t^3.529 + t^3.868 + t^4.11 + t^4.28 + 2*t^4.357 + t^4.433 + t^4.45 + 2*t^4.526 + 6*t^4.603 + 2*t^4.68 + t^4.756 + 2*t^4.773 + 5*t^4.849 + 2*t^4.926 + 3*t^5.096 + t^5.584 + t^5.83 + t^5.907 - 3*t^6. - t^4.151/y - t^4.151*y | detail | |
3396 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ | 0.6909 | 0.8877 | 0.7783 | [M:[0.7502, 0.7838, 0.6844, 0.8495, 1.1505, 0.8495, 0.7012], q:[0.8579, 0.3919], qb:[0.4576, 0.7586], phi:[0.3835]] | t^2.053 + t^2.104 + t^2.25 + t^2.301 + t^2.351 + 2*t^2.549 + t^3.502 + t^3.699 + t^4.106 + t^4.157 + t^4.207 + t^4.304 + 2*t^4.354 + 2*t^4.405 + t^4.455 + t^4.501 + t^4.551 + 4*t^4.602 + 3*t^4.652 + t^4.703 + 2*t^4.799 + 3*t^4.85 + 2*t^4.9 + 3*t^5.097 + t^5.555 + t^5.606 + t^5.752 + t^5.803 + t^5.853 - 2*t^6. - t^4.15/y - t^4.15*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1824 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ | 0.6574 | 0.8268 | 0.7952 | [M:[0.7351, 0.7916, 0.6718, 0.8549, 1.1451], q:[0.8691, 0.3958], qb:[0.4591, 0.7492], phi:[0.3817]] | t^2.015 + t^2.205 + t^2.29 + t^2.375 + t^2.565 + t^3.435 + t^3.52 + t^3.71 + t^3.9 + t^4.031 + t^4.221 + t^4.305 + t^4.39 + t^4.411 + t^4.495 + 3*t^4.58 + t^4.665 + t^4.75 + t^4.77 + 2*t^4.855 + t^4.94 + t^5.13 + t^5.451 + t^5.535 + t^5.64 + 2*t^5.725 + t^5.81 + t^5.895 + t^5.915 - t^6. - t^4.145/y - t^4.145*y | detail |