Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3281 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{5}$ + ${ }M_{6}q_{1}q_{2}$ 0.6999 0.9187 0.7619 [M:[1.146, 0.677, 0.677, 0.823, 0.854, 0.823], q:[0.75, 0.427], qb:[0.427, 0.396], phi:[0.5]] [M:[[2], [-1], [-1], [1], [-2], [1]], q:[[0], [-1]], qb:[[-1], [2]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }M_{4}$, ${ }M_{6}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{2}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}M_{5}q_{1}\tilde{q}_{2}$ -4 2*t^2.031 + 4*t^2.469 + t^2.562 + t^3. + t^3.438 + t^3.876 + 6*t^4.062 + 8*t^4.5 + 2*t^4.593 + 10*t^4.938 + 6*t^5.031 + t^5.124 + 6*t^5.469 + t^5.562 + 4*t^5.907 - 4*t^6. + 8*t^6.093 + 4*t^6.345 + 20*t^6.531 + 6*t^6.624 + t^6.876 + 16*t^6.969 + 10*t^7.062 + 2*t^7.155 + t^7.314 + 16*t^7.407 + 16*t^7.5 + 2*t^7.593 + t^7.686 + t^7.752 + 16*t^7.938 - 8*t^8.031 + 16*t^8.124 + 10*t^8.376 - 18*t^8.469 + 20*t^8.562 + 8*t^8.655 + 10*t^8.814 - t^4.5/y - (2*t^6.531)/y - (2*t^6.969)/y + t^7.062/y + (8*t^7.5)/y + (2*t^7.593)/y + (6*t^7.938)/y + (8*t^8.031)/y + (8*t^8.469)/y - (2*t^8.562)/y + (6*t^8.907)/y - t^4.5*y - 2*t^6.531*y - 2*t^6.969*y + t^7.062*y + 8*t^7.5*y + 2*t^7.593*y + 6*t^7.938*y + 8*t^8.031*y + 8*t^8.469*y - 2*t^8.562*y + 6*t^8.907*y (2*t^2.031)/g1 + 4*g1*t^2.469 + t^2.562/g1^2 + t^3. + g1^2*t^3.438 + g1^4*t^3.876 + (6*t^4.062)/g1^2 + 8*t^4.5 + (2*t^4.593)/g1^3 + 10*g1^2*t^4.938 + (6*t^5.031)/g1 + t^5.124/g1^4 + 6*g1*t^5.469 + t^5.562/g1^2 + 4*g1^3*t^5.907 - 4*t^6. + (8*t^6.093)/g1^3 + 4*g1^5*t^6.345 + (20*t^6.531)/g1 + (6*t^6.624)/g1^4 + g1^4*t^6.876 + 16*g1*t^6.969 + (10*t^7.062)/g1^2 + (2*t^7.155)/g1^5 + g1^6*t^7.314 + 16*g1^3*t^7.407 + 16*t^7.5 + (2*t^7.593)/g1^3 + t^7.686/g1^6 + g1^8*t^7.752 + 16*g1^2*t^7.938 - (8*t^8.031)/g1 + (16*t^8.124)/g1^4 + 10*g1^4*t^8.376 - 18*g1*t^8.469 + (20*t^8.562)/g1^2 + (8*t^8.655)/g1^5 + 10*g1^6*t^8.814 - t^4.5/y - (2*t^6.531)/(g1*y) - (2*g1*t^6.969)/y + t^7.062/(g1^2*y) + (8*t^7.5)/y + (2*t^7.593)/(g1^3*y) + (6*g1^2*t^7.938)/y + (8*t^8.031)/(g1*y) + (8*g1*t^8.469)/y - (2*t^8.562)/(g1^2*y) + (6*g1^3*t^8.907)/y - t^4.5*y - (2*t^6.531*y)/g1 - 2*g1*t^6.969*y + (t^7.062*y)/g1^2 + 8*t^7.5*y + (2*t^7.593*y)/g1^3 + 6*g1^2*t^7.938*y + (8*t^8.031*y)/g1 + 8*g1*t^8.469*y - (2*t^8.562*y)/g1^2 + 6*g1^3*t^8.907*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2762 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{5}$ 0.6851 0.8931 0.7671 [M:[1.1561, 0.672, 0.672, 0.828, 0.8439], q:[0.75, 0.422], qb:[0.422, 0.4061], phi:[0.5]] 2*t^2.016 + 3*t^2.484 + t^2.532 + t^3. + t^3.468 + t^3.516 + t^3.936 + 6*t^4.032 + 6*t^4.5 + 2*t^4.548 + 6*t^4.968 + 5*t^5.016 + t^5.064 + 5*t^5.484 + 3*t^5.532 + 3*t^5.952 - t^6. - t^4.5/y - t^4.5*y detail