Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2835 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ | 0.6999 | 0.9187 | 0.7619 | [M:[0.823, 1.177, 0.823, 0.677, 0.823, 0.677], q:[0.75, 0.427], qb:[0.427, 0.396], phi:[0.5]] | [M:[[1, 1], [-1, -1], [1, 1], [-1, -1], [-1, 0], [1, 0]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{4}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$ | ${}$ | -4 | 2*t^2.031 + 4*t^2.469 + t^2.562 + t^3. + t^3.438 + t^3.876 + 6*t^4.062 + 8*t^4.5 + 2*t^4.593 + 10*t^4.938 + 6*t^5.031 + t^5.124 + 6*t^5.469 + t^5.562 + 4*t^5.907 - 4*t^6. + 8*t^6.093 + 4*t^6.345 + 20*t^6.531 + 6*t^6.624 + t^6.876 + 16*t^6.969 + 10*t^7.062 + 2*t^7.155 + t^7.314 + 16*t^7.407 + 16*t^7.5 + 2*t^7.593 + t^7.686 + t^7.752 + 16*t^7.938 - 8*t^8.031 + 16*t^8.124 + 10*t^8.376 - 18*t^8.469 + 20*t^8.562 + 8*t^8.655 + 10*t^8.814 - t^4.5/y - (2*t^6.531)/y - (2*t^6.969)/y + t^7.062/y + (8*t^7.5)/y + (2*t^7.593)/y + (6*t^7.938)/y + (8*t^8.031)/y + (8*t^8.469)/y - (2*t^8.562)/y + (6*t^8.907)/y - t^4.5*y - 2*t^6.531*y - 2*t^6.969*y + t^7.062*y + 8*t^7.5*y + 2*t^7.593*y + 6*t^7.938*y + 8*t^8.031*y + 8*t^8.469*y - 2*t^8.562*y + 6*t^8.907*y | g1*t^2.031 + t^2.031/(g1*g2) + (2*t^2.469)/g1 + 2*g1*g2*t^2.469 + t^2.562/g2 + t^3. + g2*t^3.438 + g2^2*t^3.876 + 2*g1^2*t^4.062 + (2*t^4.062)/(g1^2*g2^2) + (2*t^4.062)/g2 + 4*t^4.5 + (2*t^4.5)/(g1^2*g2) + 2*g1^2*g2*t^4.5 + t^4.593/(g1*g2^2) + (g1*t^4.593)/g2 + (3*t^4.938)/g1^2 + 4*g2*t^4.938 + 3*g1^2*g2^2*t^4.938 + 3*g1*t^5.031 + (3*t^5.031)/(g1*g2) + t^5.124/g2^2 + (3*t^5.469)/g1 + 3*g1*g2*t^5.469 + t^5.562/g2 + (2*g2*t^5.907)/g1 + 2*g1*g2^2*t^5.907 - 2*t^6. - t^6./(g1^2*g2) - g1^2*g2*t^6. + 2*g1^3*t^6.093 + (2*t^6.093)/(g1^3*g2^3) + (2*t^6.093)/(g1*g2^2) + (2*g1*t^6.093)/g2 + (2*g2^2*t^6.345)/g1 + 2*g1*g2^3*t^6.345 + 6*g1*t^6.531 + (4*t^6.531)/(g1^3*g2^2) + (6*t^6.531)/(g1*g2) + 4*g1^3*g2*t^6.531 + (2*t^6.624)/(g1^2*g2^3) + (2*t^6.624)/g2^2 + (2*g1^2*t^6.624)/g2 + g2^2*t^6.876 + (5*t^6.969)/g1 + (3*t^6.969)/(g1^3*g2) + 5*g1*g2*t^6.969 + 3*g1^3*g2^2*t^6.969 + 3*g1^2*t^7.062 + (3*t^7.062)/(g1^2*g2^2) + (4*t^7.062)/g2 + t^7.155/(g1*g2^3) + (g1*t^7.155)/g2^2 + g2^3*t^7.314 + (4*t^7.407)/g1^3 + (4*g2*t^7.407)/g1 + 4*g1*g2^2*t^7.407 + 4*g1^3*g2^3*t^7.407 + 6*t^7.5 + (5*t^7.5)/(g1^2*g2) + 5*g1^2*g2*t^7.5 + t^7.593/(g1*g2^2) + (g1*t^7.593)/g2 + t^7.686/g2^3 + g2^4*t^7.752 + (5*t^7.938)/g1^2 + 6*g2*t^7.938 + 5*g1^2*g2^2*t^7.938 - 3*g1*t^8.031 - t^8.031/(g1^3*g2^2) - (3*t^8.031)/(g1*g2) - g1^3*g2*t^8.031 + 3*g1^4*t^8.124 + (3*t^8.124)/(g1^4*g2^4) + (3*t^8.124)/(g1^2*g2^3) + (4*t^8.124)/g2^2 + (3*g1^2*t^8.124)/g2 + (3*g2*t^8.376)/g1^2 + 4*g2^2*t^8.376 + 3*g1^2*g2^3*t^8.376 - (7*t^8.469)/g1 - (2*t^8.469)/(g1^3*g2) - 7*g1*g2*t^8.469 - 2*g1^3*g2^2*t^8.469 + 5*g1^2*t^8.562 + (4*t^8.562)/(g1^4*g2^3) + (5*t^8.562)/(g1^2*g2^2) + (2*t^8.562)/g2 + 4*g1^4*g2*t^8.562 + (2*t^8.655)/(g1^3*g2^4) + (2*t^8.655)/(g1*g2^3) + (2*g1*t^8.655)/g2^2 + (2*g1^3*t^8.655)/g2 + (3*g2^2*t^8.814)/g1^2 + 4*g2^3*t^8.814 + 3*g1^2*g2^4*t^8.814 - t^4.5/y - (g1*t^6.531)/y - t^6.531/(g1*g2*y) - t^6.969/(g1*y) - (g1*g2*t^6.969)/y + t^7.062/(g2*y) + (4*t^7.5)/y + (2*t^7.5)/(g1^2*g2*y) + (2*g1^2*g2*t^7.5)/y + t^7.593/(g1*g2^2*y) + (g1*t^7.593)/(g2*y) + t^7.938/(g1^2*y) + (4*g2*t^7.938)/y + (g1^2*g2^2*t^7.938)/y + (4*g1*t^8.031)/y + (4*t^8.031)/(g1*g2*y) + (4*t^8.469)/(g1*y) + (4*g1*g2*t^8.469)/y - (g1^2*t^8.562)/y - t^8.562/(g1^2*g2^2*y) + (3*g2*t^8.907)/(g1*y) + (3*g1*g2^2*t^8.907)/y - t^4.5*y - g1*t^6.531*y - (t^6.531*y)/(g1*g2) - (t^6.969*y)/g1 - g1*g2*t^6.969*y + (t^7.062*y)/g2 + 4*t^7.5*y + (2*t^7.5*y)/(g1^2*g2) + 2*g1^2*g2*t^7.5*y + (t^7.593*y)/(g1*g2^2) + (g1*t^7.593*y)/g2 + (t^7.938*y)/g1^2 + 4*g2*t^7.938*y + g1^2*g2^2*t^7.938*y + 4*g1*t^8.031*y + (4*t^8.031*y)/(g1*g2) + (4*t^8.469*y)/g1 + 4*g1*g2*t^8.469*y - g1^2*t^8.562*y - (t^8.562*y)/(g1^2*g2^2) + (3*g2*t^8.907*y)/g1 + 3*g1*g2^2*t^8.907*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1817 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ | 0.6791 | 0.8778 | 0.7737 | [M:[0.8237, 1.1763, 0.8237, 0.6763, 0.8213], q:[0.75, 0.4263], qb:[0.4287, 0.395], phi:[0.5]] | t^2.029 + 2*t^2.464 + 2*t^2.471 + t^2.565 + t^3. + t^3.435 + t^3.87 + t^3.964 + 2*t^4.058 + t^4.065 + t^4.072 + 2*t^4.493 + 2*t^4.5 + t^4.594 + 3*t^4.928 + 4*t^4.935 + 3*t^4.942 + 3*t^5.029 + 2*t^5.036 + t^5.13 + 3*t^5.464 + 2*t^5.471 + t^5.565 + 2*t^5.899 + t^5.906 - 2*t^6. - t^4.5/y - t^4.5*y | detail |