Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3271 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_3\phi_1^2$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_5q_2\tilde{q}_1$ + $ M_6\phi_1\tilde{q}_1^2$ 0.6499 0.8195 0.7931 [X:[1.6], M:[0.8, 0.8, 1.2, 0.4, 0.7434, 0.7434], q:[0.3717, 0.8283], qb:[0.4283, 0.7717], phi:[0.4]] [X:[[0, 0]], M:[[1, 1], [-1, -1], [0, 0], [0, 0], [-1, 1], [-2, 0]], q:[[-1, 0], [0, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_5$, $ M_1$, $ M_2$, $ \phi_1^2$, $ M_2$, $ M_1$, $ \phi_1q_1^2$, $ q_1\tilde{q}_2$, $ M_3$, $ \phi_1q_1\tilde{q}_1$, $ M_6^2$, $ M_5M_6$, $ M_5^2$, $ M_2M_5$, $ M_6\phi_1^2$, $ M_2M_6$, $ M_1M_6$, $ M_5\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_5$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ M_1\phi_1^2$, $ M_2\phi_1^2$, $ \phi_1^4$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ X_1$, $ M_2^2$, $ M_2\phi_1^2$, $ \phi_1q_1q_2$, $ M_1\phi_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_6\phi_1q_1^2$, $ M_5\phi_1q_1^2$, $ M_6q_1\tilde{q}_2$, $ M_5q_1\tilde{q}_2$, $ M_3M_6$, $ \phi_1^3q_1^2$, $ M_6\phi_1q_1\tilde{q}_1$, $ M_2\phi_1q_1^2$, $ M_3M_5$, $ M_5\phi_1q_1\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$ $M_1M_3$, $ M_2M_3$, $ \phi_1^3q_1\tilde{q}_1$ 1 2*t^2.23 + 3*t^2.4 + 2*t^3.43 + 2*t^3.6 + 3*t^4.46 + 6*t^4.63 + 7*t^4.8 + 4*t^5.66 + 8*t^5.83 + t^6. - 2*t^6.17 + 4*t^6.69 + 12*t^6.86 + 14*t^7.03 + 7*t^7.2 - 4*t^7.37 + 6*t^7.89 + 14*t^8.06 + 8*t^8.23 - 8*t^8.4 - 8*t^8.57 + 5*t^8.92 - t^4.2/y - (2*t^6.43)/y - (2*t^6.6)/y + t^7.46/y + (6*t^7.63)/y + (5*t^7.8)/y + (2*t^7.97)/y + t^8.66/y + (6*t^8.83)/y - t^4.2*y - 2*t^6.43*y - 2*t^6.6*y + t^7.46*y + 6*t^7.63*y + 5*t^7.8*y + 2*t^7.97*y + t^8.66*y + 6*t^8.83*y t^2.23/g1^2 + (g2*t^2.23)/g1 + t^2.4 + t^2.4/(g1*g2) + g1*g2*t^2.4 + t^3.43/g1^2 + (g2*t^3.43)/g1 + 2*t^3.6 + t^4.46/g1^4 + (g2*t^4.46)/g1^3 + (g2^2*t^4.46)/g1^2 + (2*t^4.63)/g1^2 + t^4.63/(g1^3*g2) + (2*g2*t^4.63)/g1 + g2^2*t^4.63 + 3*t^4.8 + t^4.8/(g1^2*g2^2) + t^4.8/(g1*g2) + g1*g2*t^4.8 + g1^2*g2^2*t^4.8 + t^5.66/g1^4 + (2*g2*t^5.66)/g1^3 + (g2^2*t^5.66)/g1^2 + (3*t^5.83)/g1^2 + t^5.83/(g1^3*g2) + (3*g2*t^5.83)/g1 + g2^2*t^5.83 - t^6. + t^6./(g1*g2) + g1*g2*t^6. - g1^2*t^6.17 - (g1*t^6.17)/g2 + t^6.69/g1^6 + (g2*t^6.69)/g1^5 + (g2^2*t^6.69)/g1^4 + (g2^3*t^6.69)/g1^3 + (3*t^6.86)/g1^4 + t^6.86/(g1^5*g2) + (4*g2*t^6.86)/g1^3 + (3*g2^2*t^6.86)/g1^2 + (g2^3*t^6.86)/g1 + (4*t^7.03)/g1^2 + t^7.03/(g1^4*g2^2) + (2*t^7.03)/(g1^3*g2) + (4*g2*t^7.03)/g1 + 2*g2^2*t^7.03 + g1*g2^3*t^7.03 + t^7.2 + t^7.2/(g1^3*g2^3) + t^7.2/(g1^2*g2^2) + t^7.2/(g1*g2) + g1*g2*t^7.2 + g1^2*g2^2*t^7.2 + g1^3*g2^3*t^7.2 - 2*g1^2*t^7.37 - (2*g1*t^7.37)/g2 + t^7.89/g1^6 + (2*g2*t^7.89)/g1^5 + (2*g2^2*t^7.89)/g1^4 + (g2^3*t^7.89)/g1^3 + (4*t^8.06)/g1^4 + t^8.06/(g1^5*g2) + (4*g2*t^8.06)/g1^3 + (4*g2^2*t^8.06)/g1^2 + (g2^3*t^8.06)/g1 + t^8.23/g1^2 + t^8.23/(g1^4*g2^2) + (2*t^8.23)/(g1^3*g2) + (g2*t^8.23)/g1 + 2*g2^2*t^8.23 + g1*g2^3*t^8.23 - 2*t^8.4 + t^8.4/(g1^2*g2^2) - (4*t^8.4)/(g1*g2) - 4*g1*g2*t^8.4 + g1^2*g2^2*t^8.4 - 3*g1^2*t^8.57 - t^8.57/g2^2 - (3*g1*t^8.57)/g2 - g1^3*g2*t^8.57 + t^8.92/g1^8 + (g2*t^8.92)/g1^7 + (g2^2*t^8.92)/g1^6 + (g2^3*t^8.92)/g1^5 + (g2^4*t^8.92)/g1^4 - t^4.2/y - t^6.43/(g1^2*y) - (g2*t^6.43)/(g1*y) - t^6.6/(g1*g2*y) - (g1*g2*t^6.6)/y + (g2*t^7.46)/(g1^3*y) + (2*t^7.63)/(g1^2*y) + t^7.63/(g1^3*g2*y) + (2*g2*t^7.63)/(g1*y) + (g2^2*t^7.63)/y + t^7.8/y + (2*t^7.8)/(g1*g2*y) + (2*g1*g2*t^7.8)/y + (g1^2*t^7.97)/y + (g1*t^7.97)/(g2*y) + (g2*t^8.66)/(g1^3*y) + (3*t^8.83)/(g1^2*y) + (3*g2*t^8.83)/(g1*y) - t^4.2*y - (t^6.43*y)/g1^2 - (g2*t^6.43*y)/g1 - (t^6.6*y)/(g1*g2) - g1*g2*t^6.6*y + (g2*t^7.46*y)/g1^3 + (2*t^7.63*y)/g1^2 + (t^7.63*y)/(g1^3*g2) + (2*g2*t^7.63*y)/g1 + g2^2*t^7.63*y + t^7.8*y + (2*t^7.8*y)/(g1*g2) + 2*g1*g2*t^7.8*y + g1^2*t^7.97*y + (g1*t^7.97*y)/g2 + (g2*t^8.66*y)/g1^3 + (3*t^8.83*y)/g1^2 + (3*g2*t^8.83*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2756 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_3\phi_1^2$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_5q_2\tilde{q}_1$ 0.6312 0.7837 0.8054 [X:[1.6], M:[0.7866, 0.8134, 1.2, 0.4, 0.7599], q:[0.3866, 0.8267], qb:[0.4134, 0.7733], phi:[0.4]] t^2.28 + t^2.36 + t^2.4 + t^2.44 + t^3.48 + t^3.52 + 2*t^3.6 + t^3.68 + t^4.56 + t^4.64 + t^4.68 + 2*t^4.72 + t^4.76 + 3*t^4.8 + t^4.84 + t^4.88 + t^5.76 + t^5.8 + t^5.84 + 3*t^5.88 + t^5.92 + 3*t^5.96 - t^6. - t^4.2/y - t^4.2*y detail