Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2756 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}X_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ 0.6312 0.7837 0.8054 [X:[1.6], M:[0.7866, 0.8134, 1.2, 0.4, 0.7599], q:[0.3866, 0.8267], qb:[0.4134, 0.7733], phi:[0.4]] [X:[[0, 0]], M:[[1, 1], [-1, -1], [0, 0], [0, 0], [-1, 1]], q:[[-1, 0], [0, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }X_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}^{2}$, ${ }M_{2}\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ ${}\phi_{1}^{3}q_{1}\tilde{q}_{1}$ -1 t^2.28 + t^2.36 + t^2.4 + t^2.44 + t^3.48 + t^3.52 + 2*t^3.6 + t^3.68 + t^4.559 + t^4.64 + t^4.68 + 2*t^4.72 + t^4.76 + 3*t^4.8 + t^4.84 + t^4.88 + t^5.759 + t^5.8 + t^5.84 + 3*t^5.88 + t^5.92 + 3*t^5.96 - t^6. + 2*t^6.04 + t^6.839 + t^6.919 + 2*t^6.959 + 3*t^7. + 2*t^7.04 + 4*t^7.08 + 2*t^7.12 + 3*t^7.16 + 2*t^7.2 + t^7.24 + t^7.28 - t^7.32 + t^7.36 + t^8.039 + t^8.079 + t^8.119 + 3*t^8.159 + 2*t^8.2 + 4*t^8.24 + 4*t^8.32 - 2*t^8.36 + 2*t^8.4 - 3*t^8.44 + t^8.48 - 2*t^8.52 - t^4.2/y - t^6.48/y - t^6.56/y - t^6.64/y + t^7.64/y + t^7.68/y + t^7.72/y + (2*t^7.76)/y + t^7.8/y + (2*t^7.84)/y + t^7.92/y + t^8.8/y + (4*t^8.88)/y + (4*t^8.96)/y - t^4.2*y - t^6.48*y - t^6.56*y - t^6.64*y + t^7.64*y + t^7.68*y + t^7.72*y + 2*t^7.76*y + t^7.8*y + 2*t^7.84*y + t^7.92*y + t^8.8*y + 4*t^8.88*y + 4*t^8.96*y (g2*t^2.28)/g1 + g1*g2*t^2.36 + t^2.4 + t^2.44/(g1*g2) + (g2*t^3.48)/g1 + t^3.52/g1^2 + 2*t^3.6 + g1^2*t^3.68 + (g2^2*t^4.559)/g1^2 + g2^2*t^4.64 + (g2*t^4.68)/g1 + t^4.72/g1^2 + g1^2*g2^2*t^4.72 + g1*g2*t^4.76 + 3*t^4.8 + t^4.84/(g1*g2) + t^4.88/(g1^2*g2^2) + (g2^2*t^5.759)/g1^2 + (g2*t^5.8)/g1^3 + g2^2*t^5.84 + (3*g2*t^5.88)/g1 + t^5.92/g1^2 + t^5.96/(g1^3*g2) + 2*g1*g2*t^5.96 - t^6. + t^6.04/(g1*g2) + g1^3*g2*t^6.04 + (g2^3*t^6.839)/g1^3 + (g2^3*t^6.919)/g1 + (2*g2^2*t^6.959)/g1^2 + (2*g2*t^7.)/g1^3 + g1*g2^3*t^7. + t^7.04/g1^4 + g2^2*t^7.04 + (3*g2*t^7.08)/g1 + g1^3*g2^3*t^7.08 + t^7.12/g1^2 + g1^2*g2^2*t^7.12 + t^7.16/(g1^3*g2) + 2*g1*g2*t^7.16 + 2*t^7.2 + t^7.24/(g1*g2) + t^7.28/(g1^2*g2^2) + t^7.32/(g1^3*g2^3) - (2*g1*t^7.32)/g2 + g1^4*t^7.36 + (g2^3*t^8.039)/g1^3 + (g2^2*t^8.079)/g1^4 + (g2^3*t^8.119)/g1 + (3*g2^2*t^8.159)/g1^2 + (g2*t^8.2)/g1^3 + g1*g2^3*t^8.2 + t^8.24/g1^4 + 3*g2^2*t^8.24 + (2*t^8.32)/g1^2 + 2*g1^2*g2^2*t^8.32 + t^8.36/(g1^3*g2) - 3*g1*g2*t^8.36 + t^8.4/(g1^4*g2^2) + g1^4*g2^2*t^8.4 - (3*t^8.44)/(g1*g2) + t^8.48/(g1^2*g2^2) - (2*g1*t^8.52)/g2 - t^4.2/y - (g2*t^6.48)/(g1*y) - (g1*g2*t^6.56)/y - t^6.64/(g1*g2*y) + (g2^2*t^7.64)/y + (g2*t^7.68)/(g1*y) + t^7.72/(g1^2*y) + (2*g1*g2*t^7.76)/y + t^7.8/y + (2*t^7.84)/(g1*g2*y) + (g1*t^7.92)/(g2*y) + (g2*t^8.8)/(g1^3*y) + (4*g2*t^8.88)/(g1*y) + t^8.92/(g1^2*y) - (g1^2*g2^2*t^8.92)/y + t^8.96/(g1^3*g2*y) + (3*g1*g2*t^8.96)/y - t^4.2*y - (g2*t^6.48*y)/g1 - g1*g2*t^6.56*y - (t^6.64*y)/(g1*g2) + g2^2*t^7.64*y + (g2*t^7.68*y)/g1 + (t^7.72*y)/g1^2 + 2*g1*g2*t^7.76*y + t^7.8*y + (2*t^7.84*y)/(g1*g2) + (g1*t^7.92*y)/g2 + (g2*t^8.8*y)/g1^3 + (4*g2*t^8.88*y)/g1 + (t^8.92*y)/g1^2 - g1^2*g2^2*t^8.92*y + (t^8.96*y)/(g1^3*g2) + 3*g1*g2*t^8.96*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3268 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}X_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ 0.6303 0.7808 0.8072 [X:[1.6], M:[0.7831, 0.8169, 1.2, 0.4, 0.7915], q:[0.4042, 0.8127], qb:[0.3958, 0.7873], phi:[0.4]] t^2.349 + t^2.375 + t^2.4 + t^2.451 + 2*t^3.575 + 2*t^3.6 + t^3.625 + t^4.699 + t^4.724 + 2*t^4.749 + t^4.775 + 3*t^4.8 + t^4.825 + t^4.851 + t^4.901 + 2*t^5.924 + 3*t^5.949 + 3*t^5.975 - t^4.2/y - t^4.2*y detail
3270 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}X_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ 0.6475 0.812 0.7974 [X:[1.6], M:[0.7678, 0.8322, 1.2, 0.4, 0.7839, 0.7839], q:[0.4081, 0.8242], qb:[0.3919, 0.7758], phi:[0.4]] t^2.303 + 2*t^2.352 + t^2.4 + t^2.497 + 2*t^3.552 + 2*t^3.6 + t^4.607 + 2*t^4.655 + 4*t^4.703 + 2*t^4.752 + 3*t^4.8 + 2*t^4.848 + t^4.897 + t^4.993 + 2*t^5.855 + 5*t^5.903 + 4*t^5.952 - t^6. - t^4.2/y - t^4.2*y detail
3271 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}X_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ 0.6499 0.8195 0.7931 [X:[1.6], M:[0.8, 0.8, 1.2, 0.4, 0.7434, 0.7434], q:[0.3717, 0.8283], qb:[0.4283, 0.7717], phi:[0.4]] 2*t^2.23 + 3*t^2.4 + 2*t^3.43 + 2*t^3.6 + 3*t^4.46 + 6*t^4.63 + 7*t^4.8 + 4*t^5.66 + 8*t^5.83 + t^6. - t^4.2/y - t^4.2*y detail
3267 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}X_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{3}q_{1}^{2}$ 0.6308 0.7823 0.8063 [X:[1.6], M:[0.7748, 0.8252, 1.2, 0.4, 0.7748], q:[0.4, 0.8252], qb:[0.4, 0.7748], phi:[0.4]] 2*t^2.324 + t^2.4 + t^2.476 + t^3.524 + 4*t^3.6 + 3*t^4.649 + 2*t^4.724 + 4*t^4.8 + t^4.876 + t^4.951 + 2*t^5.849 + 7*t^5.924 - t^4.2/y - t^4.2*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1751 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}X_{1}$ 0.6135 0.751 0.8169 [X:[1.6], M:[0.8, 0.8, 1.2, 0.4], q:[0.4, 0.8], qb:[0.4, 0.8], phi:[0.4]] 3*t^2.4 + 6*t^3.6 + 7*t^4.8 + 9*t^6. - t^4.2/y - t^4.2*y detail {a: 1227/2000, c: 751/1000, X1: 8/5, M1: 4/5, M2: 4/5, M3: 6/5, M4: 2/5, q1: 2/5, q2: 4/5, qb1: 2/5, qb2: 4/5, phi1: 2/5}