Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3099 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6q_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ 0.6297 0.8357 0.7535 [X:[], M:[0.9258, 1.2226, 1.0742, 0.7774, 0.7774, 0.8339, 0.7774], q:[0.7315, 0.3427], qb:[0.3427, 0.4347], phi:[0.5371]] [X:[], M:[[4], [-12], [-4], [12], [12], [-18], [12]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_1$, $ M_4$, $ M_5$, $ M_7$, $ q_2\tilde{q}_2$, $ M_6$, $ M_3$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_6q_2\tilde{q}_1$, $ M_4^2$, $ M_4M_5$, $ M_5^2$, $ M_4M_7$, $ M_5M_7$, $ M_7^2$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_4M_6$, $ M_5M_6$, $ M_6M_7$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_6^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_3M_4$, $ M_3M_5$, $ M_3M_7$, $ M_4\phi_1^2$, $ M_5\phi_1^2$, $ M_7\phi_1^2$, $ M_4q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_1$, $ M_7q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_6q_1\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$ $M_4\phi_1q_2^2$, $ M_7\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$ -1 t^2.06 + 4*t^2.33 + t^2.5 + 3*t^3.22 + t^3.67 + 2*t^3.94 + t^4.11 + t^4.22 + 4*t^4.39 + t^4.56 + 10*t^4.66 + 4*t^4.83 + t^5. + 3*t^5.28 + 11*t^5.55 + 2*t^5.72 - t^6. + 2*t^6.17 + 6*t^6.28 + 7*t^6.45 + 4*t^6.55 + t^6.61 + 8*t^6.72 + 4*t^6.89 + 19*t^7. + t^7.06 + 10*t^7.17 + 5*t^7.34 + t^7.44 + t^7.5 + 5*t^7.61 + 2*t^7.78 + 24*t^7.89 + 2*t^8.06 + 2*t^8.16 + 3*t^8.23 - 12*t^8.33 + t^8.44 + 4*t^8.5 + 12*t^8.61 + 2*t^8.67 + 16*t^8.78 + 10*t^8.88 + 2*t^8.95 - t^4.61/y - (2*t^6.94)/y - t^7.11/y + (5*t^7.39)/y + t^7.56/y + (6*t^7.66)/y + (3*t^7.83)/y + t^8.11/y + (5*t^8.28)/y + (12*t^8.55)/y + (4*t^8.72)/y - t^4.61*y - 2*t^6.94*y - t^7.11*y + 5*t^7.39*y + t^7.56*y + 6*t^7.66*y + 3*t^7.83*y + t^8.11*y + 5*t^8.28*y + 12*t^8.55*y + 4*t^8.72*y t^2.06/g1^10 + 4*g1^12*t^2.33 + t^2.5/g1^18 + (3*t^3.22)/g1^4 + t^3.67/g1^12 + 2*g1^10*t^3.94 + t^4.11/g1^20 + g1^32*t^4.22 + 4*g1^2*t^4.39 + t^4.56/g1^28 + 10*g1^24*t^4.66 + (4*t^4.83)/g1^6 + t^5./g1^36 + (3*t^5.28)/g1^14 + 11*g1^8*t^5.55 + (2*t^5.72)/g1^22 - t^6. + (2*t^6.17)/g1^30 + 6*g1^22*t^6.28 + (7*t^6.45)/g1^8 + 4*g1^44*t^6.55 + t^6.61/g1^38 + 8*g1^14*t^6.72 + (4*t^6.89)/g1^16 + 19*g1^36*t^7. + t^7.06/g1^46 + 10*g1^6*t^7.17 + (5*t^7.34)/g1^24 + g1^28*t^7.44 + t^7.5/g1^54 + (5*t^7.61)/g1^2 + (2*t^7.78)/g1^32 + 24*g1^20*t^7.89 + (2*t^8.06)/g1^10 + 2*g1^42*t^8.16 + (3*t^8.23)/g1^40 - 12*g1^12*t^8.33 + g1^64*t^8.44 + (4*t^8.5)/g1^18 + 12*g1^34*t^8.61 + (2*t^8.67)/g1^48 + 16*g1^4*t^8.78 + 10*g1^56*t^8.88 + (2*t^8.95)/g1^26 - t^4.61/(g1^2*y) - (2*g1^10*t^6.94)/y - t^7.11/(g1^20*y) + (5*g1^2*t^7.39)/y + t^7.56/(g1^28*y) + (6*g1^24*t^7.66)/y + (3*t^7.83)/(g1^6*y) + (g1^16*t^8.11)/y + (5*t^8.28)/(g1^14*y) + (12*g1^8*t^8.55)/y + (4*t^8.72)/(g1^22*y) - (t^4.61*y)/g1^2 - 2*g1^10*t^6.94*y - (t^7.11*y)/g1^20 + 5*g1^2*t^7.39*y + (t^7.56*y)/g1^28 + 6*g1^24*t^7.66*y + (3*t^7.83*y)/g1^6 + g1^16*t^8.11*y + (5*t^8.28*y)/g1^14 + 12*g1^8*t^8.55*y + (4*t^8.72*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4975 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6q_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ + $ M_8\phi_1q_2^2$ 0.6477 0.8688 0.7455 [X:[], M:[0.9231, 1.2306, 1.0769, 0.7694, 0.7694, 0.8459, 0.7694, 0.7694], q:[0.7308, 0.3461], qb:[0.3461, 0.4233], phi:[0.5384]] t^2.08 + 5*t^2.31 + t^2.54 + 3*t^3.23 + 2*t^3.92 + 2*t^4.15 + 5*t^4.38 + t^4.61 + 15*t^4.62 + 5*t^4.85 + t^5.08 + 3*t^5.31 + 14*t^5.54 + t^5.77 - 5*t^6. - t^4.62/y - t^4.62*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2032 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6q_1\tilde{q}_2$ 0.6122 0.8041 0.7613 [X:[], M:[0.9289, 1.2134, 1.0711, 0.7866, 0.7866, 0.8201], q:[0.7322, 0.3389], qb:[0.3389, 0.4477], phi:[0.5356]] t^2.03 + 3*t^2.36 + t^2.46 + 3*t^3.21 + 2*t^3.64 + 2*t^3.97 + t^4.07 + t^4.29 + 3*t^4.39 + t^4.49 + 6*t^4.72 + 3*t^4.82 + t^4.92 + 3*t^5.25 + 8*t^5.57 + 3*t^5.67 + t^6. - t^4.61/y - t^4.61*y detail