Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2032 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6q_1\tilde{q}_2$ 0.6122 0.8041 0.7613 [X:[], M:[0.9289, 1.2134, 1.0711, 0.7866, 0.7866, 0.8201], q:[0.7322, 0.3389], qb:[0.3389, 0.4477], phi:[0.5356]] [X:[], M:[[4], [-12], [-4], [12], [12], [-18]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_1$, $ M_4$, $ M_5$, $ q_2\tilde{q}_2$, $ M_6$, $ M_3$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_6q_2\tilde{q}_1$, $ M_4^2$, $ M_4M_5$, $ M_5^2$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_4M_6$, $ M_5M_6$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_6^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_3M_4$, $ M_3M_5$, $ M_4\phi_1^2$, $ M_5\phi_1^2$, $ M_4q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_6q_1\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1^3$ $M_4\phi_1q_2^2$, $ M_4\phi_1\tilde{q}_1^2$, $ M_5\phi_1\tilde{q}_1^2$, $ \phi_1q_2^3\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1^2\tilde{q}_2$ 1 t^2.03 + 3*t^2.36 + t^2.46 + 3*t^3.21 + 2*t^3.64 + 2*t^3.97 + t^4.07 + t^4.29 + 3*t^4.39 + t^4.49 + 6*t^4.72 + 3*t^4.82 + t^4.92 + 3*t^5.25 + 8*t^5.57 + 3*t^5.67 + t^6. + 3*t^6.1 + 4*t^6.33 + 6*t^6.43 + t^6.53 + 3*t^6.65 + 4*t^6.75 + 6*t^6.85 + t^6.95 + 9*t^7.08 + 6*t^7.18 + 6*t^7.28 + t^7.38 + t^7.51 + 4*t^7.61 + 3*t^7.71 + 14*t^7.93 + 3*t^8.03 + 4*t^8.13 + 2*t^8.26 - 5*t^8.36 + 5*t^8.46 + 3*t^8.56 + t^8.59 + 6*t^8.69 + 9*t^8.79 + 4*t^8.89 + t^8.99 - t^4.61/y - t^6.97/y - t^7.07/y + (4*t^7.39)/y + t^7.49/y + (3*t^7.72)/y + (2*t^7.82)/y + t^8.15/y + (4*t^8.25)/y + (9*t^8.57)/y + (5*t^8.67)/y - t^4.61*y - t^6.97*y - t^7.07*y + 4*t^7.39*y + t^7.49*y + 3*t^7.72*y + 2*t^7.82*y + t^8.15*y + 4*t^8.25*y + 9*t^8.57*y + 5*t^8.67*y t^2.03/g1^10 + 3*g1^12*t^2.36 + t^2.46/g1^18 + (3*t^3.21)/g1^4 + (2*t^3.64)/g1^12 + 2*g1^10*t^3.97 + t^4.07/g1^20 + g1^32*t^4.29 + 3*g1^2*t^4.39 + t^4.49/g1^28 + 6*g1^24*t^4.72 + (3*t^4.82)/g1^6 + t^4.92/g1^36 + (3*t^5.25)/g1^14 + 8*g1^8*t^5.57 + (3*t^5.67)/g1^22 + t^6. + (3*t^6.1)/g1^30 + 4*g1^22*t^6.33 + (6*t^6.43)/g1^8 + t^6.53/g1^38 + 3*g1^44*t^6.65 + 4*g1^14*t^6.75 + (6*t^6.85)/g1^16 + t^6.95/g1^46 + 9*g1^36*t^7.08 + 6*g1^6*t^7.18 + (6*t^7.28)/g1^24 + t^7.38/g1^54 + g1^28*t^7.51 + (4*t^7.61)/g1^2 + (3*t^7.71)/g1^32 + 14*g1^20*t^7.93 + (3*t^8.03)/g1^10 + (4*t^8.13)/g1^40 + 2*g1^42*t^8.26 - 5*g1^12*t^8.36 + (5*t^8.46)/g1^18 + (3*t^8.56)/g1^48 + g1^64*t^8.59 + 6*g1^34*t^8.69 + 9*g1^4*t^8.79 + (4*t^8.89)/g1^26 + t^8.99/g1^56 - t^4.61/(g1^2*y) - (g1^10*t^6.97)/y - t^7.07/(g1^20*y) + (4*g1^2*t^7.39)/y + t^7.49/(g1^28*y) + (3*g1^24*t^7.72)/y + (2*t^7.82)/(g1^6*y) + (g1^16*t^8.15)/y + (4*t^8.25)/(g1^14*y) + (9*g1^8*t^8.57)/y + (5*t^8.67)/(g1^22*y) - (t^4.61*y)/g1^2 - g1^10*t^6.97*y - (t^7.07*y)/g1^20 + 4*g1^2*t^7.39*y + (t^7.49*y)/g1^28 + 3*g1^24*t^7.72*y + (2*t^7.82*y)/g1^6 + g1^16*t^8.15*y + (4*t^8.25*y)/g1^14 + 9*g1^8*t^8.57*y + (5*t^8.67*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3099 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6q_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ 0.6297 0.8357 0.7535 [X:[], M:[0.9258, 1.2226, 1.0742, 0.7774, 0.7774, 0.8339, 0.7774], q:[0.7315, 0.3427], qb:[0.3427, 0.4347], phi:[0.5371]] t^2.06 + 4*t^2.33 + t^2.5 + 3*t^3.22 + t^3.67 + 2*t^3.94 + t^4.11 + t^4.22 + 4*t^4.39 + t^4.56 + 10*t^4.66 + 4*t^4.83 + t^5. + 3*t^5.28 + 11*t^5.55 + 2*t^5.72 - t^6. - t^4.61/y - t^4.61*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
847 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ 0.5979 0.7809 0.7657 [X:[], M:[0.9223, 1.2331, 1.0777, 0.7669, 0.7669], q:[0.7306, 0.3471], qb:[0.3471, 0.4197], phi:[0.5389]] t^2.08 + 3*t^2.3 + 3*t^3.23 + t^3.45 + 2*t^3.7 + 2*t^3.92 + t^4.14 + t^4.17 + 3*t^4.38 + 6*t^4.6 + 3*t^5.32 + 9*t^5.53 + 3*t^5.75 + t^6. - t^4.62/y - t^4.62*y detail