Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2733 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ | 0.6255 | 0.8112 | 0.7711 | [M:[0.9857, 1.043, 0.9857, 0.7751, 0.7751], q:[0.7464, 0.2679], qb:[0.4785, 0.4785], phi:[0.5072]] | [M:[[4, 4], [-12, -12], [4, 4], [-13, -1], [-1, -13]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$ | ${}\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | -2 | 2*t^2.239 + 2*t^2.325 + 2*t^2.957 + 2*t^3.129 + 2*t^3.761 + 3*t^4.392 + 3*t^4.478 + 4*t^4.565 + 3*t^4.651 + 4*t^5.196 + 4*t^5.282 + 2*t^5.368 + 4*t^5.454 + 2*t^5.914 - 2*t^6. + 6*t^6.086 + 3*t^6.258 + 2*t^6.632 + 10*t^6.718 + 2*t^6.804 + 8*t^6.89 + 4*t^6.976 + 3*t^7.349 + t^7.435 + 9*t^7.522 + 8*t^7.608 + 4*t^7.694 + 6*t^7.78 - 2*t^8.067 + 4*t^8.153 - 2*t^8.239 - 4*t^8.325 + 10*t^8.411 + 2*t^8.497 + 6*t^8.584 + 5*t^8.785 + 3*t^8.871 - 2*t^8.957 - t^4.522/y - (2*t^6.847)/y + t^7.392/y + (5*t^7.565)/y + (6*t^8.196)/y + (4*t^8.282)/y + (4*t^8.368)/y + (4*t^8.454)/y + t^8.914/y - t^4.522*y - 2*t^6.847*y + t^7.392*y + 5*t^7.565*y + 6*t^8.196*y + 4*t^8.282*y + 4*t^8.368*y + 4*t^8.454*y + t^8.914*y | (g1^7*t^2.239)/g2^5 + (g2^7*t^2.239)/g1^5 + t^2.325/(g1*g2^13) + t^2.325/(g1^13*g2) + 2*g1^4*g2^4*t^2.957 + (2*t^3.129)/(g1^12*g2^12) + (g1^5*t^3.761)/g2^7 + (g2^5*t^3.761)/g1^7 + (g1^22*t^4.392)/g2^2 + g1^10*g2^10*t^4.392 + (g2^22*t^4.392)/g1^2 + (g1^14*t^4.478)/g2^10 + g1^2*g2^2*t^4.478 + (g2^14*t^4.478)/g1^10 + (g1^6*t^4.565)/g2^18 + (2*t^4.565)/(g1^6*g2^6) + (g2^6*t^4.565)/g1^18 + t^4.651/(g1^2*g2^26) + t^4.651/(g1^14*g2^14) + t^4.651/(g1^26*g2^2) + (2*g1^11*t^5.196)/g2 + (2*g2^11*t^5.196)/g1 + (2*g1^3*t^5.282)/g2^9 + (2*g2^3*t^5.282)/g1^9 + t^5.368/(g1^5*g2^17) + t^5.368/(g1^17*g2^5) + (2*t^5.454)/(g1^13*g2^25) + (2*t^5.454)/(g1^25*g2^13) + 2*g1^8*g2^8*t^5.914 - 2*t^6. + (g1^4*t^6.086)/g2^20 + (4*t^6.086)/(g1^8*g2^8) + (g2^4*t^6.086)/g1^20 + (3*t^6.258)/(g1^24*g2^24) + (g1^29*t^6.632)/g2^7 + (g2^29*t^6.632)/g1^7 + (2*g1^21*t^6.718)/g2^15 + (3*g1^9*t^6.718)/g2^3 + (3*g2^9*t^6.718)/g1^3 + (2*g2^21*t^6.718)/g1^15 + (g1^13*t^6.804)/g2^23 + (g2^13*t^6.804)/g1^23 + (g1^5*t^6.89)/g2^31 + (3*t^6.89)/(g1^7*g2^19) + (3*t^6.89)/(g1^19*g2^7) + (g2^5*t^6.89)/g1^31 + t^6.976/(g1^3*g2^39) + t^6.976/(g1^15*g2^27) + t^6.976/(g1^27*g2^15) + t^6.976/(g1^39*g2^3) + g1^26*g2^2*t^7.349 + g1^14*g2^14*t^7.349 + g1^2*g2^26*t^7.349 + (g1^18*t^7.435)/g2^6 - g1^6*g2^6*t^7.435 + (g2^18*t^7.435)/g1^6 + (3*g1^10*t^7.522)/g2^14 + (3*t^7.522)/(g1^2*g2^2) + (3*g2^10*t^7.522)/g1^14 + (3*g1^2*t^7.608)/g2^22 + (2*t^7.608)/(g1^10*g2^10) + (3*g2^2*t^7.608)/g1^22 + t^7.694/(g1^6*g2^30) + (2*t^7.694)/(g1^18*g2^18) + t^7.694/(g1^30*g2^6) + (2*t^7.78)/(g1^14*g2^38) + (2*t^7.78)/(g1^26*g2^26) + (2*t^7.78)/(g1^38*g2^14) - g1^23*g2^11*t^8.067 - g1^11*g2^23*t^8.067 + (g1^27*t^8.153)/g2^9 + g1^15*g2^3*t^8.153 + g1^3*g2^15*t^8.153 + (g2^27*t^8.153)/g1^9 - (g1^7*t^8.239)/g2^5 - (g2^7*t^8.239)/g1^5 - (2*t^8.325)/(g1*g2^13) - (2*t^8.325)/(g1^13*g2) + (g1^3*t^8.411)/g2^33 + (4*t^8.411)/(g1^9*g2^21) + (4*t^8.411)/(g1^21*g2^9) + (g2^3*t^8.411)/g1^33 + t^8.497/(g1^17*g2^29) + t^8.497/(g1^29*g2^17) + (3*t^8.584)/(g1^25*g2^37) + (3*t^8.584)/(g1^37*g2^25) + (g1^44*t^8.785)/g2^4 + g1^32*g2^8*t^8.785 + g1^20*g2^20*t^8.785 + g1^8*g2^32*t^8.785 + (g2^44*t^8.785)/g1^4 + (g1^36*t^8.871)/g2^12 + g1^12*g2^12*t^8.871 + (g2^36*t^8.871)/g1^12 + (2*g1^28*t^8.957)/g2^20 - 6*g1^4*g2^4*t^8.957 + (2*g2^28*t^8.957)/g1^20 - t^4.522/(g1^2*g2^2*y) - t^6.847/(g1^3*g2^15*y) - t^6.847/(g1^15*g2^3*y) + (g1^10*g2^10*t^7.392)/y + (g1^6*t^7.565)/(g2^18*y) + (3*t^7.565)/(g1^6*g2^6*y) + (g2^6*t^7.565)/(g1^18*y) + (3*g1^11*t^8.196)/(g2*y) + (3*g2^11*t^8.196)/(g1*y) + (2*g1^3*t^8.282)/(g2^9*y) + (2*g2^3*t^8.282)/(g1^9*y) + (2*t^8.368)/(g1^5*g2^17*y) + (2*t^8.368)/(g1^17*g2^5*y) + (2*t^8.454)/(g1^13*g2^25*y) + (2*t^8.454)/(g1^25*g2^13*y) + (g1^8*g2^8*t^8.914)/y - (t^4.522*y)/(g1^2*g2^2) - (t^6.847*y)/(g1^3*g2^15) - (t^6.847*y)/(g1^15*g2^3) + g1^10*g2^10*t^7.392*y + (g1^6*t^7.565*y)/g2^18 + (3*t^7.565*y)/(g1^6*g2^6) + (g2^6*t^7.565*y)/g1^18 + (3*g1^11*t^8.196*y)/g2 + (3*g2^11*t^8.196*y)/g1 + (2*g1^3*t^8.282*y)/g2^9 + (2*g2^3*t^8.282*y)/g1^9 + (2*t^8.368*y)/(g1^5*g2^17) + (2*t^8.368*y)/(g1^17*g2^5) + (2*t^8.454*y)/(g1^13*g2^25) + (2*t^8.454*y)/(g1^25*g2^13) + g1^8*g2^8*t^8.914*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1734 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ | 0.6083 | 0.7807 | 0.7792 | [M:[0.9781, 1.0657, 0.9781, 0.7742], q:[0.7445, 0.2774], qb:[0.4812, 0.453], phi:[0.511]] | t^2.191 + t^2.276 + t^2.323 + 2*t^2.934 + 2*t^3.197 + t^3.593 + t^3.724 + t^3.809 + t^4.251 + t^4.336 + t^4.382 + t^4.42 + t^4.467 + t^4.514 + t^4.552 + t^4.599 + t^4.645 + 2*t^5.125 + 2*t^5.21 + 2*t^5.257 + t^5.388 + t^5.473 + 2*t^5.52 + t^5.784 + 3*t^5.869 + t^5.915 - 2*t^6. - t^4.533/y - t^4.533*y | detail |