Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46417 | SU2adj1nf2 | $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ + $ M_5\phi_1^2$ | 0.6255 | 0.8112 | 0.7711 | [X:[], M:[0.9857, 1.043, 0.7751, 0.7751, 0.9857], q:[0.7464, 0.2679], qb:[0.4785, 0.4785], phi:[0.5072]] | [X:[], M:[[4, 4], [-12, -12], [-13, -1], [-1, -13], [4, 4]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_4$, $ M_3$, $ M_1$, $ M_5$, $ M_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_4q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_4^2$, $ M_3M_4$, $ M_3^2$, $ \phi_1q_1\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ M_1M_4$, $ M_4M_5$, $ M_1M_3$, $ M_3M_5$, $ \phi_1q_2^3\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_2$, $ M_2M_4$, $ M_4\phi_1q_2^2$, $ M_2M_3$, $ M_3\phi_1q_2^2$, $ M_1^2$, $ M_1M_5$, $ M_5^2$ | $\phi_1q_2^2\tilde{q}_1^2$, $ \phi_1q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ | -2 | 2*t^2.24 + 2*t^2.33 + 2*t^2.96 + 2*t^3.13 + 2*t^3.76 + 3*t^4.39 + 3*t^4.48 + 4*t^4.56 + 3*t^4.65 + 4*t^5.2 + 4*t^5.28 + 2*t^5.37 + 4*t^5.45 + 2*t^5.91 - 2*t^6. + 6*t^6.09 + 3*t^6.26 + 2*t^6.63 + 10*t^6.72 + 2*t^6.8 + 8*t^6.89 + 4*t^6.98 + 3*t^7.35 + t^7.44 + 9*t^7.52 + 8*t^7.61 + 4*t^7.69 + 6*t^7.78 - 2*t^8.07 + 4*t^8.15 - 2*t^8.24 - 4*t^8.33 + 10*t^8.41 + 2*t^8.5 + 6*t^8.58 + 5*t^8.78 + 3*t^8.87 - 2*t^8.96 - t^4.52/y - (2*t^6.85)/y + t^7.39/y + (5*t^7.56)/y + (6*t^8.2)/y + (4*t^8.28)/y + (4*t^8.37)/y + (4*t^8.45)/y + t^8.91/y - t^4.52*y - 2*t^6.85*y + t^7.39*y + 5*t^7.56*y + 6*t^8.2*y + 4*t^8.28*y + 4*t^8.37*y + 4*t^8.45*y + t^8.91*y | (g1^7*t^2.24)/g2^5 + (g2^7*t^2.24)/g1^5 + t^2.33/(g1*g2^13) + t^2.33/(g1^13*g2) + 2*g1^4*g2^4*t^2.96 + (2*t^3.13)/(g1^12*g2^12) + (g1^5*t^3.76)/g2^7 + (g2^5*t^3.76)/g1^7 + (g1^22*t^4.39)/g2^2 + g1^10*g2^10*t^4.39 + (g2^22*t^4.39)/g1^2 + (g1^14*t^4.48)/g2^10 + g1^2*g2^2*t^4.48 + (g2^14*t^4.48)/g1^10 + (g1^6*t^4.56)/g2^18 + (2*t^4.56)/(g1^6*g2^6) + (g2^6*t^4.56)/g1^18 + t^4.65/(g1^2*g2^26) + t^4.65/(g1^14*g2^14) + t^4.65/(g1^26*g2^2) + (2*g1^11*t^5.2)/g2 + (2*g2^11*t^5.2)/g1 + (2*g1^3*t^5.28)/g2^9 + (2*g2^3*t^5.28)/g1^9 + t^5.37/(g1^5*g2^17) + t^5.37/(g1^17*g2^5) + (2*t^5.45)/(g1^13*g2^25) + (2*t^5.45)/(g1^25*g2^13) + 2*g1^8*g2^8*t^5.91 - 2*t^6. + (g1^4*t^6.09)/g2^20 + (4*t^6.09)/(g1^8*g2^8) + (g2^4*t^6.09)/g1^20 + (3*t^6.26)/(g1^24*g2^24) + (g1^29*t^6.63)/g2^7 + (g2^29*t^6.63)/g1^7 + (2*g1^21*t^6.72)/g2^15 + (3*g1^9*t^6.72)/g2^3 + (3*g2^9*t^6.72)/g1^3 + (2*g2^21*t^6.72)/g1^15 + (g1^13*t^6.8)/g2^23 + (g2^13*t^6.8)/g1^23 + (g1^5*t^6.89)/g2^31 + (3*t^6.89)/(g1^7*g2^19) + (3*t^6.89)/(g1^19*g2^7) + (g2^5*t^6.89)/g1^31 + t^6.98/(g1^3*g2^39) + t^6.98/(g1^15*g2^27) + t^6.98/(g1^27*g2^15) + t^6.98/(g1^39*g2^3) + g1^26*g2^2*t^7.35 + g1^14*g2^14*t^7.35 + g1^2*g2^26*t^7.35 + (g1^18*t^7.44)/g2^6 - g1^6*g2^6*t^7.44 + (g2^18*t^7.44)/g1^6 + (3*g1^10*t^7.52)/g2^14 + (3*t^7.52)/(g1^2*g2^2) + (3*g2^10*t^7.52)/g1^14 + (3*g1^2*t^7.61)/g2^22 + (2*t^7.61)/(g1^10*g2^10) + (3*g2^2*t^7.61)/g1^22 + t^7.69/(g1^6*g2^30) + (2*t^7.69)/(g1^18*g2^18) + t^7.69/(g1^30*g2^6) + (2*t^7.78)/(g1^14*g2^38) + (2*t^7.78)/(g1^26*g2^26) + (2*t^7.78)/(g1^38*g2^14) - g1^23*g2^11*t^8.07 - g1^11*g2^23*t^8.07 + (g1^27*t^8.15)/g2^9 + g1^15*g2^3*t^8.15 + g1^3*g2^15*t^8.15 + (g2^27*t^8.15)/g1^9 - (g1^7*t^8.24)/g2^5 - (g2^7*t^8.24)/g1^5 - (2*t^8.33)/(g1*g2^13) - (2*t^8.33)/(g1^13*g2) + (g1^3*t^8.41)/g2^33 + (4*t^8.41)/(g1^9*g2^21) + (4*t^8.41)/(g1^21*g2^9) + (g2^3*t^8.41)/g1^33 + t^8.5/(g1^17*g2^29) + t^8.5/(g1^29*g2^17) + (3*t^8.58)/(g1^25*g2^37) + (3*t^8.58)/(g1^37*g2^25) + (g1^44*t^8.78)/g2^4 + g1^32*g2^8*t^8.78 + g1^20*g2^20*t^8.78 + g1^8*g2^32*t^8.78 + (g2^44*t^8.78)/g1^4 + (g1^36*t^8.87)/g2^12 + g1^12*g2^12*t^8.87 + (g2^36*t^8.87)/g1^12 + (2*g1^28*t^8.96)/g2^20 - 6*g1^4*g2^4*t^8.96 + (2*g2^28*t^8.96)/g1^20 - t^4.52/(g1^2*g2^2*y) - t^6.85/(g1^3*g2^15*y) - t^6.85/(g1^15*g2^3*y) + (g1^10*g2^10*t^7.39)/y + (g1^6*t^7.56)/(g2^18*y) + (3*t^7.56)/(g1^6*g2^6*y) + (g2^6*t^7.56)/(g1^18*y) + (3*g1^11*t^8.2)/(g2*y) + (3*g2^11*t^8.2)/(g1*y) + (2*g1^3*t^8.28)/(g2^9*y) + (2*g2^3*t^8.28)/(g1^9*y) + (2*t^8.37)/(g1^5*g2^17*y) + (2*t^8.37)/(g1^17*g2^5*y) + (2*t^8.45)/(g1^13*g2^25*y) + (2*t^8.45)/(g1^25*g2^13*y) + (g1^8*g2^8*t^8.91)/y - (t^4.52*y)/(g1^2*g2^2) - (t^6.85*y)/(g1^3*g2^15) - (t^6.85*y)/(g1^15*g2^3) + g1^10*g2^10*t^7.39*y + (g1^6*t^7.56*y)/g2^18 + (3*t^7.56*y)/(g1^6*g2^6) + (g2^6*t^7.56*y)/g1^18 + (3*g1^11*t^8.2*y)/g2 + (3*g2^11*t^8.2*y)/g1 + (2*g1^3*t^8.28*y)/g2^9 + (2*g2^3*t^8.28*y)/g1^9 + (2*t^8.37*y)/(g1^5*g2^17) + (2*t^8.37*y)/(g1^17*g2^5) + (2*t^8.45*y)/(g1^13*g2^25) + (2*t^8.45*y)/(g1^25*g2^13) + g1^8*g2^8*t^8.91*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
47110 | $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ + $ M_5\phi_1^2$ + $ M_2M_4$ | 0.6167 | 0.7982 | 0.7726 | [X:[], M:[0.9519, 1.1442, 0.8125, 0.8558, 0.9519], q:[0.738, 0.3101], qb:[0.4495, 0.4063], phi:[0.524]] | t^2.15 + t^2.28 + t^2.44 + t^2.57 + 2*t^2.86 + 2*t^3.43 + t^3.72 + t^3.85 + t^4.01 + t^4.14 + t^4.27 + t^4.3 + t^4.43 + t^4.56 + t^4.59 + 2*t^4.72 + t^4.85 + t^4.88 + 3*t^5. + 3*t^5.13 + 2*t^5.29 + 2*t^5.42 + t^5.58 + 3*t^5.71 + 2*t^5.87 - t^4.57/y - t^4.57*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46250 | SU2adj1nf2 | $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ | 0.6245 | 0.8105 | 0.7705 | [X:[], M:[0.9922, 1.0234, 0.7637, 0.7637], q:[0.748, 0.2598], qb:[0.4883, 0.4883], phi:[0.5039]] | 2*t^2.24 + 2*t^2.29 + t^2.98 + t^3.02 + 2*t^3.07 + 2*t^3.76 + 3*t^4.44 + 3*t^4.49 + 4*t^4.54 + 3*t^4.58 + 2*t^5.22 + 4*t^5.27 + 4*t^5.31 + 4*t^5.36 - t^6. - t^4.51/y - t^4.51*y | detail |