Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2434 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_7q_1\tilde{q}_2$ 0.633 0.8451 0.749 [X:[], M:[0.9292, 1.2125, 1.0708, 0.7875, 0.7875, 0.6771, 0.8188], q:[0.7323, 0.3386], qb:[0.3386, 0.4489], phi:[0.5354]] [X:[], M:[[4], [-12], [-4], [12], [12], [-10], [-18]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ q_2\tilde{q}_1$, $ M_4$, $ M_5$, $ q_2\tilde{q}_2$, $ M_7$, $ M_3$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_6^2$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_4M_6$, $ M_5M_6$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_6M_7$, $ M_7q_2\tilde{q}_1$, $ M_4^2$, $ M_4M_5$, $ M_5^2$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_4M_7$, $ M_5M_7$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_7q_2\tilde{q}_2$, $ M_7^2$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_6q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_3M_4$, $ M_3M_5$, $ M_4\phi_1^2$, $ M_5\phi_1^2$, $ M_4q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_7$, $ M_7\phi_1^2$, $ M_6\phi_1q_2^2$, $ M_7q_1\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_6\phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$ $M_4\phi_1q_2^2$, $ M_4\phi_1\tilde{q}_1^2$, $ M_5\phi_1\tilde{q}_1^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_6\phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1^2\tilde{q}_2$ 1 2*t^2.03 + 3*t^2.36 + t^2.46 + 3*t^3.21 + 2*t^3.64 + t^3.97 + 3*t^4.06 + t^4.3 + 6*t^4.39 + 2*t^4.49 + 6*t^4.72 + 3*t^4.82 + t^4.91 + 6*t^5.24 + 8*t^5.57 + 5*t^5.67 + t^6. + 6*t^6.09 + 2*t^6.33 + 11*t^6.43 + 3*t^6.52 + 3*t^6.66 + 10*t^6.76 + 9*t^6.85 + 2*t^6.94 + 9*t^7.09 + 3*t^7.18 + 12*t^7.28 + t^7.37 + t^7.51 + 10*t^7.61 + 8*t^7.7 + 12*t^7.94 + 3*t^8.03 + 10*t^8.13 + t^8.27 - 6*t^8.36 + 15*t^8.46 + 6*t^8.55 + t^8.6 + 3*t^8.69 + 16*t^8.79 + 12*t^8.88 + 3*t^8.98 - t^4.61/y - t^6.64/y - t^6.97/y + (7*t^7.39)/y + (2*t^7.49)/y + (3*t^7.72)/y + (2*t^7.82)/y + t^8.15/y + (7*t^8.24)/y + (10*t^8.57)/y + (6*t^8.67)/y - t^4.61*y - t^6.64*y - t^6.97*y + 7*t^7.39*y + 2*t^7.49*y + 3*t^7.72*y + 2*t^7.82*y + t^8.15*y + 7*t^8.24*y + 10*t^8.57*y + 6*t^8.67*y (2*t^2.03)/g1^10 + 3*g1^12*t^2.36 + t^2.46/g1^18 + (3*t^3.21)/g1^4 + (2*t^3.64)/g1^12 + g1^10*t^3.97 + (3*t^4.06)/g1^20 + g1^32*t^4.3 + 6*g1^2*t^4.39 + (2*t^4.49)/g1^28 + 6*g1^24*t^4.72 + (3*t^4.82)/g1^6 + t^4.91/g1^36 + (6*t^5.24)/g1^14 + 8*g1^8*t^5.57 + (5*t^5.67)/g1^22 + t^6. + (6*t^6.09)/g1^30 + 2*g1^22*t^6.33 + (11*t^6.43)/g1^8 + (3*t^6.52)/g1^38 + 3*g1^44*t^6.66 + 10*g1^14*t^6.76 + (9*t^6.85)/g1^16 + (2*t^6.94)/g1^46 + 9*g1^36*t^7.09 + 3*g1^6*t^7.18 + (12*t^7.28)/g1^24 + t^7.37/g1^54 + g1^28*t^7.51 + (10*t^7.61)/g1^2 + (8*t^7.7)/g1^32 + 12*g1^20*t^7.94 + (3*t^8.03)/g1^10 + (10*t^8.13)/g1^40 + g1^42*t^8.27 - 6*g1^12*t^8.36 + (15*t^8.46)/g1^18 + (6*t^8.55)/g1^48 + g1^64*t^8.6 + 3*g1^34*t^8.69 + 16*g1^4*t^8.79 + (12*t^8.88)/g1^26 + (3*t^8.98)/g1^56 - t^4.61/(g1^2*y) - t^6.64/(g1^12*y) - (g1^10*t^6.97)/y + (7*g1^2*t^7.39)/y + (2*t^7.49)/(g1^28*y) + (3*g1^24*t^7.72)/y + (2*t^7.82)/(g1^6*y) + (g1^16*t^8.15)/y + (7*t^8.24)/(g1^14*y) + (10*g1^8*t^8.57)/y + (6*t^8.67)/(g1^22*y) - (t^4.61*y)/g1^2 - (t^6.64*y)/g1^12 - g1^10*t^6.97*y + 7*g1^2*t^7.39*y + (2*t^7.49*y)/g1^28 + 3*g1^24*t^7.72*y + (2*t^7.82*y)/g1^6 + g1^16*t^8.15*y + (7*t^8.24*y)/g1^14 + 10*g1^8*t^8.57*y + (6*t^8.67*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1344 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6\phi_1q_2\tilde{q}_2$ 0.6186 0.8205 0.7539 [X:[], M:[0.923, 1.2309, 1.077, 0.7691, 0.7691, 0.6924], q:[0.7308, 0.3462], qb:[0.3462, 0.4229], phi:[0.5385]] 2*t^2.08 + 3*t^2.31 + 3*t^3.23 + t^3.46 + 2*t^3.69 + t^3.92 + 4*t^4.15 + 6*t^4.38 + 6*t^4.61 + 6*t^5.31 + 10*t^5.54 + 5*t^5.77 + t^6. - t^4.62/y - t^4.62*y detail