Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1344 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6\phi_1q_2\tilde{q}_2$ | 0.6186 | 0.8205 | 0.7539 | [X:[], M:[0.923, 1.2309, 1.077, 0.7691, 0.7691, 0.6924], q:[0.7308, 0.3462], qb:[0.3462, 0.4229], phi:[0.5385]] | [X:[], M:[[4], [-12], [-4], [12], [12], [-10]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_6$, $ q_2\tilde{q}_1$, $ M_4$, $ M_5$, $ q_2\tilde{q}_2$, $ M_3$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_6^2$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_4M_6$, $ M_5M_6$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_4M_5$, $ M_5^2$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_6q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_3M_4$, $ M_3M_5$, $ M_4\phi_1^2$, $ M_5\phi_1^2$, $ M_4q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_1$, $ M_6q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ M_6\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_6\phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$, $ M_4q_1\tilde{q}_2$, $ M_5q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$ | $M_4\phi_1q_2^2$, $ M_4\phi_1\tilde{q}_1^2$, $ M_5\phi_1\tilde{q}_1^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_6\phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1^2\tilde{q}_2$ | 1 | 2*t^2.08 + 3*t^2.31 + 3*t^3.23 + t^3.46 + 2*t^3.69 + t^3.92 + 4*t^4.15 + 6*t^4.38 + 6*t^4.61 + 6*t^5.31 + 10*t^5.54 + 5*t^5.77 + t^6. + 6*t^6.23 + 13*t^6.46 + 12*t^6.69 + 13*t^6.92 - t^7.15 + 2*t^7.38 + 9*t^7.39 + t^7.61 + 13*t^7.62 + 20*t^7.85 + 2*t^8.08 + 17*t^8.54 + 26*t^8.77 - t^4.62/y - t^6.69/y - t^6.92/y + t^7.15/y + (7*t^7.38)/y + (3*t^7.61)/y - t^7.85/y + (7*t^8.31)/y + (12*t^8.54)/y + (6*t^8.77)/y - t^4.62*y - t^6.69*y - t^6.92*y + t^7.15*y + 7*t^7.38*y + 3*t^7.61*y - t^7.85*y + 7*t^8.31*y + 12*t^8.54*y + 6*t^8.77*y | (2*t^2.08)/g1^10 + 3*g1^12*t^2.31 + (3*t^3.23)/g1^4 + g1^18*t^3.46 + (2*t^3.69)/g1^12 + g1^10*t^3.92 + (3*t^4.15)/g1^20 + g1^32*t^4.15 + 6*g1^2*t^4.38 + 6*g1^24*t^4.61 + (6*t^5.31)/g1^14 + 10*g1^8*t^5.54 + (2*t^5.77)/g1^22 + 3*g1^30*t^5.77 + t^6. + (4*t^6.23)/g1^30 + 2*g1^22*t^6.23 + (10*t^6.46)/g1^8 + 3*g1^44*t^6.46 + 12*g1^14*t^6.69 + (3*t^6.92)/g1^16 + 10*g1^36*t^6.92 - g1^6*t^7.15 + 2*g1^28*t^7.38 + (9*t^7.39)/g1^24 + g1^50*t^7.61 + (13*t^7.62)/g1^2 + (2*t^7.85)/g1^32 + 18*g1^20*t^7.85 - (5*t^8.08)/g1^10 + 7*g1^42*t^8.08 + (5*t^8.31)/g1^40 - 6*g1^12*t^8.31 + g1^64*t^8.31 + (14*t^8.54)/g1^18 + 3*g1^34*t^8.54 + 20*g1^4*t^8.77 + 6*g1^56*t^8.77 - t^4.62/(g1^2*y) - t^6.69/(g1^12*y) - (g1^10*t^6.92)/y + t^7.15/(g1^20*y) + (7*g1^2*t^7.38)/y + (3*g1^24*t^7.61)/y - t^7.85/(g1^6*y) + (7*t^8.31)/(g1^14*y) + (12*g1^8*t^8.54)/y + (3*t^8.77)/(g1^22*y) + (3*g1^30*t^8.77)/y - (t^4.62*y)/g1^2 - (t^6.69*y)/g1^12 - g1^10*t^6.92*y + (t^7.15*y)/g1^20 + 7*g1^2*t^7.38*y + 3*g1^24*t^7.61*y - (t^7.85*y)/g1^6 + (7*t^8.31*y)/g1^14 + 12*g1^8*t^8.54*y + (3*t^8.77*y)/g1^22 + 3*g1^30*t^8.77*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
2434 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_7q_1\tilde{q}_2$ | 0.633 | 0.8451 | 0.749 | [X:[], M:[0.9292, 1.2125, 1.0708, 0.7875, 0.7875, 0.6771, 0.8188], q:[0.7323, 0.3386], qb:[0.3386, 0.4489], phi:[0.5354]] | 2*t^2.03 + 3*t^2.36 + t^2.46 + 3*t^3.21 + 2*t^3.64 + t^3.97 + 3*t^4.06 + t^4.3 + 6*t^4.39 + 2*t^4.49 + 6*t^4.72 + 3*t^4.82 + t^4.91 + 6*t^5.24 + 8*t^5.57 + 5*t^5.67 + t^6. - t^4.61/y - t^4.61*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
847 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ | 0.5979 | 0.7809 | 0.7657 | [X:[], M:[0.9223, 1.2331, 1.0777, 0.7669, 0.7669], q:[0.7306, 0.3471], qb:[0.3471, 0.4197], phi:[0.5389]] | t^2.08 + 3*t^2.3 + 3*t^3.23 + t^3.45 + 2*t^3.7 + 2*t^3.92 + t^4.14 + t^4.17 + 3*t^4.38 + 6*t^4.6 + 3*t^5.32 + 9*t^5.53 + 3*t^5.75 + t^6. - t^4.62/y - t^4.62*y | detail |