Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2383 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_3M_5$ + $ M_7q_1\tilde{q}_2$ + $ M_5M_8$ 0.706 0.8672 0.8141 [X:[], M:[0.8983, 1.0404, 1.0209, 0.9402, 0.9791, 1.0598, 0.8594, 1.0209], q:[0.6107, 0.491], qb:[0.4491, 0.5299], phi:[0.4798]] [X:[], M:[[8, 0], [-2, 2], [-4, -4], [0, -8], [4, 4], [0, 8], [4, -12], [-4, -4]], q:[[-4, 8], [-4, -8]], qb:[[4, 0], [0, 4]], phi:[[1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_7$, $ M_1$, $ M_4$, $ M_3$, $ M_8$, $ M_2$, $ M_6$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ M_7^2$, $ M_1M_7$, $ M_1^2$, $ M_4M_7$, $ M_4^2$, $ M_3M_7$, $ M_7M_8$, $ M_2M_7$, $ M_1M_3$, $ M_6M_7$, $ M_1M_8$, $ M_1M_2$, $ M_3M_4$, $ M_4M_8$, $ M_2M_4$ . -3 t^2.58 + t^2.69 + t^2.82 + 2*t^3.06 + t^3.12 + t^3.18 + t^4.13 + t^4.26 + t^4.38 + t^4.39 + t^4.5 + 2*t^4.62 + t^4.74 + t^4.86 + t^5.1 + t^5.16 + t^5.27 + t^5.39 + t^5.4 + 2*t^5.64 + t^5.7 + t^5.76 + t^5.82 + t^5.88 + t^5.94 - 3*t^6. - t^6.12 + 2*t^6.13 + 2*t^6.18 + t^6.3 - t^6.48 + t^6.71 + t^6.83 + t^6.84 + 2*t^6.95 + t^6.96 + t^7.07 + 2*t^7.08 + 3*t^7.2 + t^7.21 + 2*t^7.31 + 2*t^7.32 + 2*t^7.44 + 2*t^7.45 + 2*t^7.57 + 2*t^7.68 + t^7.73 + t^7.8 + t^7.81 + t^7.85 + t^7.92 + t^7.97 + t^7.98 + t^8.08 + t^8.17 + 2*t^8.22 + t^8.27 + 2*t^8.28 + t^8.34 + 2*t^8.39 + t^8.46 + 2*t^8.51 + 2*t^8.52 - 4*t^8.58 + t^8.64 + t^8.65 - 5*t^8.69 + t^8.7 + 2*t^8.75 + 3*t^8.76 + t^8.77 - t^8.81 - 3*t^8.82 + 3*t^8.88 + t^8.89 - 3*t^8.94 - t^4.44/y - t^7.02/y - t^7.13/y + t^7.38/y - t^7.5/y + t^7.74/y + t^7.86/y + t^8.27/y + t^8.4/y + t^8.52/y + (2*t^8.64)/y + t^8.7/y + (3*t^8.76)/y + t^8.82/y + t^8.87/y + (2*t^8.88)/y + t^8.94/y - t^4.44*y - t^7.02*y - t^7.13*y + t^7.38*y - t^7.5*y + t^7.74*y + t^7.86*y + t^8.27*y + t^8.4*y + t^8.52*y + 2*t^8.64*y + t^8.7*y + 3*t^8.76*y + t^8.82*y + t^8.87*y + 2*t^8.88*y + t^8.94*y (g1^4*t^2.58)/g2^12 + g1^8*t^2.69 + t^2.82/g2^8 + (2*t^3.06)/(g1^4*g2^4) + (g2^2*t^3.12)/g1^2 + g2^8*t^3.18 + (g1^9*t^4.13)/g2 + (g1*t^4.26)/g2^9 + g1^5*g2^3*t^4.38 + t^4.39/(g1^7*g2^17) + t^4.5/(g1^3*g2^5) + 2*g1*g2^7*t^4.62 + t^4.74/(g1^7*g2) + (g2^11*t^4.86)/g1^3 + (g2^15*t^5.1)/g1^7 + (g1^8*t^5.16)/g2^24 + (g1^12*t^5.27)/g2^12 + g1^16*t^5.39 + (g1^4*t^5.4)/g2^20 + (2*t^5.64)/g2^16 + (g1^2*t^5.7)/g2^10 + (g1^4*t^5.76)/g2^4 + g1^6*g2^2*t^5.82 + t^5.88/(g1^4*g2^12) + t^5.94/(g1^2*g2^6) - 3*t^6. - g1^4*g2^12*t^6.12 + (2*t^6.13)/(g1^8*g2^8) + (2*t^6.18)/(g1^6*g2^2) + (g2^10*t^6.3)/g1^2 - (g2^8*t^6.48)/g1^8 + (g1^13*t^6.71)/g2^13 + (g1^17*t^6.83)/g2 + (g1^5*t^6.84)/g2^21 + (2*g1^9*t^6.95)/g2^9 + t^6.96/(g1^3*g2^29) + g1^13*g2^3*t^7.07 + (2*g1*t^7.08)/g2^17 + (3*g1^5*t^7.2)/g2^5 + t^7.21/(g1^7*g2^25) + 2*g1^9*g2^7*t^7.31 + (2*t^7.32)/(g1^3*g2^13) + (2*g1*t^7.44)/g2 + (2*t^7.45)/(g1^11*g2^21) + (2*t^7.57)/(g1^7*g2^9) + (2*g2^3*t^7.68)/g1^3 + (g1^12*t^7.73)/g2^36 + g1*g2^15*t^7.8 + t^7.81/(g1^11*g2^5) + (g1^16*t^7.85)/g2^24 + (g2^7*t^7.92)/g1^7 + (g1^20*t^7.97)/g2^12 + (g1^8*t^7.98)/g2^32 + g1^24*t^8.08 + (g2^11*t^8.17)/g1^11 + (2*g1^4*t^8.22)/g2^28 + (g1^18*t^8.27)/g2^2 + (g1^6*t^8.28)/g2^22 + (g2^23*t^8.28)/g1^7 + (g1^8*t^8.34)/g2^16 + (2*g1^10*t^8.39)/g2^10 + t^8.46/g2^24 + 2*g1^14*g2^2*t^8.51 + (2*g1^2*t^8.52)/g2^18 - (4*g1^4*t^8.58)/g2^12 + (g1^6*t^8.64)/g2^6 + t^8.65/(g1^6*g2^26) - 5*g1^8*t^8.69 + t^8.7/(g1^4*g2^20) + 2*g1^10*g2^6*t^8.75 + (3*t^8.76)/(g1^2*g2^14) + t^8.77/(g1^14*g2^34) - g1^12*g2^12*t^8.81 - (3*t^8.82)/g2^8 + (3*g1^2*t^8.88)/g2^2 + t^8.89/(g1^10*g2^22) - 3*g1^4*g2^4*t^8.94 - (g1*t^4.44)/(g2*y) - (g1^5*t^7.02)/(g2^13*y) - (g1^9*t^7.13)/(g2*y) + (g1^5*g2^3*t^7.38)/y - t^7.5/(g1^3*g2^5*y) + t^7.74/(g1^7*g2*y) + (g2^11*t^7.86)/(g1^3*y) + (g1^12*t^8.27)/(g2^12*y) + (g1^4*t^8.4)/(g2^20*y) + (g1^8*t^8.52)/(g2^8*y) + (2*t^8.64)/(g2^16*y) + (g1^2*t^8.7)/(g2^10*y) + (3*g1^4*t^8.76)/(g2^4*y) + (g1^6*g2^2*t^8.82)/y + (g1^8*g2^8*t^8.87)/y + (2*t^8.88)/(g1^4*g2^12*y) + t^8.94/(g1^2*g2^6*y) - (g1*t^4.44*y)/g2 - (g1^5*t^7.02*y)/g2^13 - (g1^9*t^7.13*y)/g2 + g1^5*g2^3*t^7.38*y - (t^7.5*y)/(g1^3*g2^5) + (t^7.74*y)/(g1^7*g2) + (g2^11*t^7.86*y)/g1^3 + (g1^12*t^8.27*y)/g2^12 + (g1^4*t^8.4*y)/g2^20 + (g1^8*t^8.52*y)/g2^8 + (2*t^8.64*y)/g2^16 + (g1^2*t^8.7*y)/g2^10 + (3*g1^4*t^8.76*y)/g2^4 + g1^6*g2^2*t^8.82*y + g1^8*g2^8*t^8.87*y + (2*t^8.88*y)/(g1^4*g2^12) + (t^8.94*y)/(g1^2*g2^6)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1333 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_3M_5$ + $ M_7q_1\tilde{q}_2$ 0.709 0.8723 0.8128 [X:[], M:[0.8671, 1.0452, 1.0426, 0.9522, 0.9574, 1.0478, 0.8619], q:[0.6142, 0.5187], qb:[0.4336, 0.5239], phi:[0.4774]] t^2.59 + t^2.6 + t^2.86 + t^2.87 + t^3.13 + 2*t^3.14 + t^4.03 + t^4.29 + t^4.3 + t^4.54 + t^4.56 + 2*t^4.58 + t^4.83 + t^4.85 + t^5.12 + t^5.17 + t^5.19 + t^5.2 + t^5.44 + t^5.46 + t^5.47 + t^5.71 + t^5.72 + t^5.73 + 2*t^5.74 + t^5.99 - 2*t^6. - t^4.43/y - t^4.43*y detail