Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1333 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_3M_5$ + $ M_7q_1\tilde{q}_2$ | 0.709 | 0.8723 | 0.8128 | [X:[], M:[0.8671, 1.0452, 1.0426, 0.9522, 0.9574, 1.0478, 0.8619], q:[0.6142, 0.5187], qb:[0.4336, 0.5239], phi:[0.4774]] | [X:[], M:[[8, 0], [-2, 2], [-4, -4], [0, -8], [4, 4], [0, 8], [4, -12]], q:[[-4, 8], [-4, -8]], qb:[[4, 0], [0, 4]], phi:[[1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_7$, $ M_1$, $ M_4$, $ M_5$, $ M_3$, $ M_2$, $ M_6$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ M_7^2$, $ M_1M_7$, $ M_1^2$, $ M_4M_7$, $ M_1M_4$, $ M_5M_7$, $ M_1M_5$, $ M_4^2$, $ M_3M_7$, $ M_2M_7$, $ M_1M_3$, $ M_4M_5$, $ M_6M_7$, $ M_1M_2$, $ M_5^2$, $ M_1M_6$, $ M_2M_4$ | . | -2 | t^2.59 + t^2.6 + t^2.86 + t^2.87 + t^3.13 + 2*t^3.14 + t^4.03 + t^4.29 + t^4.3 + t^4.54 + t^4.56 + 2*t^4.58 + t^4.83 + t^4.85 + t^5.12 + t^5.17 + t^5.19 + t^5.2 + t^5.44 + t^5.46 + t^5.47 + t^5.71 + t^5.72 + t^5.73 + 2*t^5.74 + t^5.99 - 2*t^6. + t^6.01 + t^6.26 - t^6.27 + t^6.28 - t^6.54 + t^6.62 + t^6.63 + t^6.87 + 2*t^6.89 + 2*t^6.91 + t^7.13 + 2*t^7.15 + 3*t^7.16 + 3*t^7.18 + t^7.4 + 2*t^7.42 + 2*t^7.43 + 2*t^7.45 + t^7.67 + t^7.69 + t^7.7 + 2*t^7.72 + t^7.76 + t^7.77 + t^7.79 + t^7.8 + t^7.99 + t^8.03 + t^8.04 + t^8.06 + 2*t^8.07 + t^8.26 + t^8.3 + 2*t^8.31 + 2*t^8.32 + 2*t^8.34 + t^8.35 + 2*t^8.58 - t^8.59 - 4*t^8.6 + 3*t^8.61 + t^8.83 - t^8.84 + 2*t^8.85 - t^8.86 - 5*t^8.87 + 3*t^8.88 - t^4.43/y - t^7.02/y - t^7.03/y + t^7.83/y + t^7.85/y + t^8.19/y + t^8.44/y + (2*t^8.46)/y + t^8.47/y + t^8.71/y + t^8.72/y + (3*t^8.73)/y + (2*t^8.74)/y + t^8.98/y + t^8.99/y - t^4.43*y - t^7.02*y - t^7.03*y + t^7.83*y + t^7.85*y + t^8.19*y + t^8.44*y + 2*t^8.46*y + t^8.47*y + t^8.71*y + t^8.72*y + 3*t^8.73*y + 2*t^8.74*y + t^8.98*y + t^8.99*y | (g1^4*t^2.59)/g2^12 + g1^8*t^2.6 + t^2.86/g2^8 + g1^4*g2^4*t^2.87 + t^3.13/(g1^4*g2^4) + (g2^2*t^3.14)/g1^2 + g2^8*t^3.14 + (g1^9*t^4.03)/g2 + (g1*t^4.29)/g2^9 + g1^5*g2^3*t^4.3 + t^4.54/(g1^7*g2^17) + t^4.56/(g1^3*g2^5) + 2*g1*g2^7*t^4.58 + t^4.83/(g1^7*g2) + (g2^11*t^4.85)/g1^3 + (g2^15*t^5.12)/g1^7 + (g1^8*t^5.17)/g2^24 + (g1^12*t^5.19)/g2^12 + g1^16*t^5.2 + (g1^4*t^5.44)/g2^20 + (g1^8*t^5.46)/g2^8 + g1^12*g2^4*t^5.47 + t^5.71/g2^16 + (g1^2*t^5.72)/g2^10 + (g1^4*t^5.73)/g2^4 + g1^6*g2^2*t^5.74 + g1^8*g2^8*t^5.74 + t^5.99/(g1^2*g2^6) - 2*t^6. + g1^2*g2^6*t^6.01 + t^6.26/(g1^6*g2^2) - (g2^4*t^6.27)/g1^4 + (g2^10*t^6.28)/g1^2 - (g2^8*t^6.54)/g1^8 + (g1^13*t^6.62)/g2^13 + (g1^17*t^6.63)/g2 + (g1^5*t^6.87)/g2^21 + (2*g1^9*t^6.89)/g2^9 + 2*g1^13*g2^3*t^6.91 + t^7.13/(g1^3*g2^29) + (2*g1*t^7.15)/g2^17 + (3*g1^5*t^7.16)/g2^5 + 3*g1^9*g2^7*t^7.18 + t^7.4/(g1^7*g2^25) + (2*t^7.42)/(g1^3*g2^13) + (2*g1*t^7.43)/g2 + 2*g1^5*g2^11*t^7.45 + t^7.67/(g1^11*g2^21) + t^7.69/(g1^7*g2^9) + (g2^3*t^7.7)/g1^3 + 2*g1*g2^15*t^7.72 + (g1^12*t^7.76)/g2^36 + (g1^16*t^7.77)/g2^24 + (g1^20*t^7.79)/g2^12 + g1^24*t^7.8 + (g2^19*t^7.99)/g1^3 + (g1^8*t^8.03)/g2^32 + (g1^12*t^8.04)/g2^20 + (g1^16*t^8.06)/g2^8 + (g1^18*t^8.07)/g2^2 + g1^20*g2^4*t^8.07 + (g2^23*t^8.26)/g1^7 + (g1^4*t^8.3)/g2^28 + (g1^6*t^8.31)/g2^22 + (g1^8*t^8.31)/g2^16 + (2*g1^10*t^8.32)/g2^10 + 2*g1^14*g2^2*t^8.34 + g1^16*g2^8*t^8.35 + (2*g1^2*t^8.58)/g2^18 - (3*g1^4*t^8.59)/g2^12 + (2*g1^6*t^8.59)/g2^6 - 4*g1^8*t^8.6 + 3*g1^10*g2^6*t^8.61 + t^8.83/(g1^6*g2^26) - t^8.84/(g1^4*g2^20) + (2*t^8.85)/(g1^2*g2^14) - (4*t^8.86)/g2^8 + (3*g1^2*t^8.86)/g2^2 - 5*g1^4*g2^4*t^8.87 + 3*g1^6*g2^10*t^8.88 - (g1*t^4.43)/(g2*y) - (g1^5*t^7.02)/(g2^13*y) - (g1^9*t^7.03)/(g2*y) + t^7.83/(g1^7*g2*y) + (g2^11*t^7.85)/(g1^3*y) + (g1^12*t^8.19)/(g2^12*y) + (g1^4*t^8.44)/(g2^20*y) + (2*g1^8*t^8.46)/(g2^8*y) + (g1^12*g2^4*t^8.47)/y + t^8.71/(g2^16*y) + (g1^2*t^8.72)/(g2^10*y) + (3*g1^4*t^8.73)/(g2^4*y) + (g1^6*g2^2*t^8.74)/y + (g1^8*g2^8*t^8.74)/y + t^8.98/(g1^4*g2^12*y) + t^8.99/(g1^2*g2^6*y) - (g1*t^4.43*y)/g2 - (g1^5*t^7.02*y)/g2^13 - (g1^9*t^7.03*y)/g2 + (t^7.83*y)/(g1^7*g2) + (g2^11*t^7.85*y)/g1^3 + (g1^12*t^8.19*y)/g2^12 + (g1^4*t^8.44*y)/g2^20 + (2*g1^8*t^8.46*y)/g2^8 + g1^12*g2^4*t^8.47*y + (t^8.71*y)/g2^16 + (g1^2*t^8.72*y)/g2^10 + (3*g1^4*t^8.73*y)/g2^4 + g1^6*g2^2*t^8.74*y + g1^8*g2^8*t^8.74*y + (t^8.98*y)/(g1^4*g2^12) + (t^8.99*y)/(g1^2*g2^6) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
2384 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_3M_5$ + $ M_7q_1\tilde{q}_2$ + $ M_3M_8$ | 0.7139 | 0.8819 | 0.8095 | [X:[], M:[0.8374, 1.0495, 1.0636, 0.9646, 0.9364, 1.0354, 0.8655, 0.9364], q:[0.6168, 0.5459], qb:[0.4187, 0.5177], phi:[0.4752]] | t^2.51 + t^2.6 + 2*t^2.81 + t^2.89 + t^3.11 + t^3.15 + t^3.94 + t^4.23 + t^4.32 + 2*t^4.53 + t^4.62 + t^4.7 + t^4.83 + t^4.91 + t^5.02 + t^5.11 + t^5.13 + t^5.19 + 2*t^5.32 + 2*t^5.41 + t^5.49 + 3*t^5.62 + t^5.66 + t^5.7 + t^5.75 + t^5.92 + 2*t^5.96 - 3*t^6. - t^4.43/y - t^4.43*y | detail | |
2382 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_3M_5$ + $ M_7q_1\tilde{q}_2$ + $ M_4M_8$ | 0.7056 | 0.8666 | 0.8143 | [X:[], M:[0.866, 1.0393, 1.0553, 0.9767, 0.9447, 1.0233, 0.898, 1.0233], q:[0.5903, 0.5437], qb:[0.433, 0.5117], phi:[0.4803]] | t^2.6 + t^2.69 + t^2.83 + 2*t^3.07 + t^3.12 + t^3.17 + t^4.04 + t^4.28 + t^4.37 + 2*t^4.51 + t^4.61 + t^4.7 + t^4.75 + t^4.84 + t^4.98 + t^5.2 + t^5.29 + t^5.39 + t^5.43 + 2*t^5.67 + t^5.72 + t^5.76 + t^5.81 + t^5.9 + t^5.95 - 3*t^6. - t^4.44/y - t^4.44*y | detail | |
2383 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_3M_5$ + $ M_7q_1\tilde{q}_2$ + $ M_5M_8$ | 0.706 | 0.8672 | 0.8141 | [X:[], M:[0.8983, 1.0404, 1.0209, 0.9402, 0.9791, 1.0598, 0.8594, 1.0209], q:[0.6107, 0.491], qb:[0.4491, 0.5299], phi:[0.4798]] | t^2.58 + t^2.69 + t^2.82 + 2*t^3.06 + t^3.12 + t^3.18 + t^4.13 + t^4.26 + t^4.38 + t^4.39 + t^4.5 + 2*t^4.62 + t^4.74 + t^4.86 + t^5.1 + t^5.16 + t^5.27 + t^5.39 + t^5.4 + 2*t^5.64 + t^5.7 + t^5.76 + t^5.82 + t^5.88 + t^5.94 - 3*t^6. - t^4.44/y - t^4.44*y | detail | |
2387 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_3M_5$ + $ M_7q_1\tilde{q}_2$ + $ M_6M_8$ | 0.7145 | 0.883 | 0.8091 | [X:[], M:[0.8676, 1.0507, 1.031, 0.9296, 0.969, 1.0704, 0.8281, 0.9296], q:[0.6366, 0.4958], qb:[0.4338, 0.5352], phi:[0.4746]] | t^2.48 + t^2.6 + 2*t^2.79 + t^2.91 + t^3.09 + t^3.15 + t^4.03 + t^4.21 + t^4.33 + t^4.4 + t^4.52 + 2*t^4.64 + t^4.82 + t^4.94 + t^4.97 + t^5.09 + t^5.21 + t^5.24 + 2*t^5.27 + 2*t^5.39 + t^5.51 + 3*t^5.58 + t^5.64 + t^5.7 + t^5.75 + t^5.88 + 2*t^5.94 - 3*t^6. - t^4.42/y - t^4.42*y | detail | |
2392 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_3M_5$ + $ M_7q_1\tilde{q}_2$ + $ \phi_1q_2^2$ | 0.6466 | 0.8096 | 0.7987 | [X:[], M:[0.7113, 1.0431, 1.2025, 1.1164, 0.7975, 0.8836, 1.0303], q:[0.5279, 0.7608], qb:[0.3557, 0.4418], phi:[0.4785]] | t^2.13 + t^2.39 + t^2.65 + t^3.09 + t^3.13 + t^3.35 + t^3.57 + t^3.61 + t^3.83 + 2*t^4.09 + t^4.27 + t^4.34 + t^4.53 + t^4.6 + 2*t^4.78 + t^5.04 + t^5.22 + t^5.26 + t^5.3 + t^5.48 + t^5.52 + t^5.7 + t^5.74 + t^5.78 + 2*t^5.96 - t^6. - t^4.44/y - t^4.44*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
836 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_3M_5$ | 0.6993 | 0.8557 | 0.8173 | [X:[], M:[0.8954, 1.0294, 1.0457, 0.9868, 0.9543, 1.0132], q:[0.5655, 0.5391], qb:[0.4477, 0.5066], phi:[0.4853]] | t^2.69 + t^2.86 + t^2.96 + t^3.04 + t^3.09 + t^3.14 + t^3.22 + t^4.14 + t^4.32 + t^4.42 + 2*t^4.5 + t^4.59 + t^4.67 + t^4.69 + t^4.77 + t^4.85 + t^5.37 + t^5.55 + t^5.73 + t^5.77 + t^5.9 + t^5.95 - 2*t^6. - t^4.46/y - t^4.46*y | detail |