Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
211 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ 0.7262 0.8734 0.8315 [M:[0.8033, 1.1538, 0.8891, 0.8033, 1.1109], q:[0.6209, 0.5758], qb:[0.5758, 0.5351], phi:[0.4231]] [M:[[-4, -4, 0, 0], [2, 2, 2, 2], [0, 0, -4, -4], [-4, 0, -4, 0], [0, 0, 4, 4]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{2}$ ${}$ -6 2*t^2.41 + 2*t^3.333 + t^3.455 + t^3.462 + t^3.468 + t^4.48 + 2*t^4.602 + 3*t^4.724 + t^4.737 + 3*t^4.82 + 2*t^4.859 + t^4.995 + 3*t^5.743 + 2*t^5.871 - 6*t^6. - 2*t^6.122 - 2*t^6.135 - t^6.257 + 3*t^6.666 + 2*t^6.788 + 2*t^6.794 + 2*t^6.801 + 2*t^6.89 + t^6.91 + t^6.917 + t^6.923 + t^6.93 + t^6.936 + 3*t^7.012 + 4*t^7.134 + 4*t^7.229 - t^7.269 - 2*t^7.391 - t^7.527 + 2*t^7.813 + 4*t^7.935 + t^7.948 + 6*t^8.057 + 2*t^8.07 + 4*t^8.152 + 3*t^8.179 + 3*t^8.192 + t^8.205 + 3*t^8.281 - t^8.288 + 2*t^8.327 - 10*t^8.41 + t^8.463 - 3*t^8.532 - t^8.545 + t^8.789 + t^8.96 - t^4.269/y - (2*t^6.679)/y + t^7.82/y + (2*t^7.859)/y + (4*t^8.743)/y + (2*t^8.865)/y + (2*t^8.871)/y + (2*t^8.878)/y - t^4.269*y - 2*t^6.679*y + t^7.82*y + 2*t^7.859*y + 4*t^8.743*y + 2*t^8.865*y + 2*t^8.871*y + 2*t^8.878*y t^2.41/(g1^4*g2^4) + t^2.41/(g1^4*g3^4) + g2^4*g4^4*t^3.333 + g3^4*g4^4*t^3.333 + g2^4*g3^4*t^3.455 + g1^2*g2^2*g3^2*g4^2*t^3.462 + g1^4*g4^4*t^3.468 + (g4^7*t^4.48)/(g1*g2*g3) + (g2^3*g4^3*t^4.602)/(g1*g3) + (g3^3*g4^3*t^4.602)/(g1*g2) + (g2^7*t^4.724)/(g1*g3*g4) + (g2^3*g3^3*t^4.724)/(g1*g4) + (g3^7*t^4.724)/(g1*g2*g4) + (g1^3*g4^3*t^4.737)/(g2*g3) + t^4.82/(g1^8*g2^8) + t^4.82/(g1^8*g3^8) + t^4.82/(g1^8*g2^4*g3^4) + (g1^3*g2^3*t^4.859)/(g3*g4) + (g1^3*g3^3*t^4.859)/(g2*g4) + (g1^7*t^4.995)/(g2*g3*g4) + (g4^4*t^5.743)/g1^4 + (g2^4*g4^4*t^5.743)/(g1^4*g3^4) + (g3^4*g4^4*t^5.743)/(g1^4*g2^4) + (g2^2*g4^2*t^5.871)/(g1^2*g3^2) + (g3^2*g4^2*t^5.871)/(g1^2*g2^2) - 4*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g2^4*t^6.122)/g4^4 - (g3^4*t^6.122)/g4^4 - (g1^4*t^6.135)/g2^4 - (g1^4*t^6.135)/g3^4 - (g1^4*t^6.257)/g4^4 + g2^8*g4^8*t^6.666 + g2^4*g3^4*g4^8*t^6.666 + g3^8*g4^8*t^6.666 + g2^8*g3^4*g4^4*t^6.788 + g2^4*g3^8*g4^4*t^6.788 + g1^2*g2^6*g3^2*g4^6*t^6.794 + g1^2*g2^2*g3^6*g4^6*t^6.794 + g1^4*g2^4*g4^8*t^6.801 + g1^4*g3^4*g4^8*t^6.801 + (g4^7*t^6.89)/(g1^5*g2*g3^5) + (g4^7*t^6.89)/(g1^5*g2^5*g3) + g2^8*g3^8*t^6.91 + g1^2*g2^6*g3^6*g4^2*t^6.917 + g1^4*g2^4*g3^4*g4^4*t^6.923 + g1^6*g2^2*g3^2*g4^6*t^6.93 + g1^8*g4^8*t^6.936 + (g2^3*g4^3*t^7.012)/(g1^5*g3^5) + (g4^3*t^7.012)/(g1^5*g2*g3) + (g3^3*g4^3*t^7.012)/(g1^5*g2^5) + (g2^7*t^7.134)/(g1^5*g3^5*g4) + (g2^3*t^7.134)/(g1^5*g3*g4) + (g3^3*t^7.134)/(g1^5*g2*g4) + (g3^7*t^7.134)/(g1^5*g2^5*g4) + t^7.229/(g1^12*g2^12) + t^7.229/(g1^12*g3^12) + t^7.229/(g1^12*g2^4*g3^8) + t^7.229/(g1^12*g2^8*g3^4) - t^7.269/(g1*g2*g3*g4) - (g2^3*t^7.391)/(g1*g3*g4^5) - (g3^3*t^7.391)/(g1*g2*g4^5) - (g1^3*t^7.527)/(g2*g3*g4^5) + (g2^3*g4^11*t^7.813)/(g1*g3) + (g3^3*g4^11*t^7.813)/(g1*g2) + (g2^7*g4^7*t^7.935)/(g1*g3) + (2*g2^3*g3^3*g4^7*t^7.935)/g1 + (g3^7*g4^7*t^7.935)/(g1*g2) + (g1^3*g4^11*t^7.948)/(g2*g3) + (g2^11*g4^3*t^8.057)/(g1*g3) + (2*g2^7*g3^3*g4^3*t^8.057)/g1 + (2*g2^3*g3^7*g4^3*t^8.057)/g1 + (g3^11*g4^3*t^8.057)/(g1*g2) + (g1^3*g2^3*g4^7*t^8.07)/g3 + (g1^3*g3^3*g4^7*t^8.07)/g2 + (g4^4*t^8.152)/(g1^8*g2^4) + (g2^4*g4^4*t^8.152)/(g1^8*g3^8) + (g4^4*t^8.152)/(g1^8*g3^4) + (g3^4*g4^4*t^8.152)/(g1^8*g2^8) + (g2^11*g3^3*t^8.179)/(g1*g4) + (g2^7*g3^7*t^8.179)/(g1*g4) + (g2^3*g3^11*t^8.179)/(g1*g4) + (g1^3*g2^7*g4^3*t^8.192)/g3 + g1^3*g2^3*g3^3*g4^3*t^8.192 + (g1^3*g3^7*g4^3*t^8.192)/g2 + (g1^7*g4^7*t^8.205)/(g2*g3) + (g2^2*g4^2*t^8.281)/(g1^6*g3^6) + (g4^2*t^8.281)/(g1^6*g2^2*g3^2) + (g3^2*g4^2*t^8.281)/(g1^6*g2^6) - (g4^4*t^8.288)/(g1^4*g2^4*g3^4) + (g1^7*g2^3*g4^3*t^8.327)/g3 + (g1^7*g3^3*g4^3*t^8.327)/g2 - (4*t^8.41)/(g1^4*g2^4) - (g2^4*t^8.41)/(g1^4*g3^8) - (4*t^8.41)/(g1^4*g3^4) - (g3^4*t^8.41)/(g1^4*g2^8) + (g1^11*g4^3*t^8.463)/(g2*g3) - t^8.532/(g1^4*g4^4) - (g2^4*t^8.532)/(g1^4*g3^4*g4^4) - (g3^4*t^8.532)/(g1^4*g2^4*g4^4) - t^8.545/(g2^4*g3^4) + t^8.789/g4^8 + (g4^14*t^8.96)/(g1^2*g2^2*g3^2) - t^4.269/(g1*g2*g3*g4*y) - t^6.679/(g1^5*g2*g3^5*g4*y) - t^6.679/(g1^5*g2^5*g3*g4*y) + t^7.82/(g1^8*g2^4*g3^4*y) + (g1^3*g2^3*t^7.859)/(g3*g4*y) + (g1^3*g3^3*t^7.859)/(g2*g4*y) + (2*g4^4*t^8.743)/(g1^4*y) + (g2^4*g4^4*t^8.743)/(g1^4*g3^4*y) + (g3^4*g4^4*t^8.743)/(g1^4*g2^4*y) + (g2^4*t^8.865)/(g1^4*y) + (g3^4*t^8.865)/(g1^4*y) + (g2^2*g4^2*t^8.871)/(g1^2*g3^2*y) + (g3^2*g4^2*t^8.871)/(g1^2*g2^2*y) + (g4^4*t^8.878)/(g2^4*y) + (g4^4*t^8.878)/(g3^4*y) - (t^4.269*y)/(g1*g2*g3*g4) - (t^6.679*y)/(g1^5*g2*g3^5*g4) - (t^6.679*y)/(g1^5*g2^5*g3*g4) + (t^7.82*y)/(g1^8*g2^4*g3^4) + (g1^3*g2^3*t^7.859*y)/(g3*g4) + (g1^3*g3^3*t^7.859*y)/(g2*g4) + (2*g4^4*t^8.743*y)/g1^4 + (g2^4*g4^4*t^8.743*y)/(g1^4*g3^4) + (g3^4*g4^4*t^8.743*y)/(g1^4*g2^4) + (g2^4*t^8.865*y)/g1^4 + (g3^4*t^8.865*y)/g1^4 + (g2^2*g4^2*t^8.871*y)/(g1^2*g3^2) + (g3^2*g4^2*t^8.871*y)/(g1^2*g2^2) + (g4^4*t^8.878*y)/g2^4 + (g4^4*t^8.878*y)/g3^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1733 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}q_{1}^{2}$ 0.6996 0.8578 0.8156 [M:[0.6908, 1.1679, 0.9735, 0.6908, 1.0265], q:[0.792, 0.5172], qb:[0.5172, 0.5093], phi:[0.4161]] 2*t^2.072 + 2*t^3.08 + t^3.103 + t^3.504 + t^3.904 + 3*t^4.145 + t^4.304 + 2*t^4.328 + 3*t^4.352 + 4*t^5.152 + 2*t^5.176 + 2*t^5.576 - 5*t^6. - t^4.248/y - t^4.248*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
129 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ 0.7394 0.8922 0.8287 [M:[0.8151, 1.1849, 0.8151, 0.7774], q:[0.6113, 0.5736], qb:[0.6113, 0.5736], phi:[0.4075]] t^2.332 + 2*t^2.445 + t^3.441 + 3*t^3.555 + 4*t^4.664 + 6*t^4.777 + 6*t^4.891 + t^5.774 + t^5.887 - 2*t^6. - t^4.223/y - t^4.223*y detail