Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1733 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_3M_5$ + $ \phi_1q_1^2$ | 0.6996 | 0.8578 | 0.8156 | [X:[], M:[0.6908, 1.1679, 0.9735, 0.6908, 1.0265], q:[0.792, 0.5172], qb:[0.5172, 0.5093], phi:[0.4161]] | [X:[], M:[[-8, -1, -1], [4, 4, 4], [0, -7, -7], [-1, -8, -1], [0, 7, 7]], q:[[1, 1, 1], [7, 0, 0]], qb:[[0, 7, 0], [0, 0, 7]], phi:[[-2, -2, -2]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_4$, $ M_1$, $ q_2\tilde{q}_2$, $ M_5$, $ q_2\tilde{q}_1$, $ M_2$, $ q_1\tilde{q}_2$, $ M_4^2$, $ M_1M_4$, $ M_1^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_4q_2\tilde{q}_2$, $ M_4M_5$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_5$, $ \phi_1q_1q_2$, $ M_4q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_1$, $ M_2M_4$, $ M_1M_2$ | . | -5 | 2*t^2.07 + 2*t^3.08 + t^3.1 + t^3.5 + t^3.9 + 3*t^4.14 + t^4.3 + 2*t^4.33 + 3*t^4.35 + 4*t^5.15 + 2*t^5.18 + 2*t^5.58 - 5*t^6. - 2*t^6.02 + 3*t^6.16 + 2*t^6.18 + t^6.21 + 4*t^6.22 + 2*t^6.38 + 3*t^6.4 + 4*t^6.42 + 2*t^6.58 + t^6.61 - 2*t^6.82 - t^6.85 + 2*t^6.98 + t^7.01 + 4*t^7.22 - t^7.25 - 2*t^7.27 + 2*t^7.38 + 5*t^7.41 + 6*t^7.43 + 3*t^7.46 + 3*t^7.65 + t^7.81 - t^8.05 - 10*t^8.07 - 4*t^8.1 + t^8.21 + 6*t^8.23 + 3*t^8.26 + 5*t^8.29 + 3*t^8.45 + 4*t^8.47 + 5*t^8.5 + t^8.61 + 2*t^8.63 + 6*t^8.66 + 4*t^8.68 + 5*t^8.7 - t^8.9 + t^8.94 - t^4.25/y - (2*t^6.32)/y + t^7.14/y + (4*t^8.15)/y + (4*t^8.18)/y - (3*t^8.39)/y + (2*t^8.58)/y + (2*t^8.98)/y - t^4.25*y - 2*t^6.32*y + t^7.14*y + 4*t^8.15*y + 4*t^8.18*y - 3*t^8.39*y + 2*t^8.58*y + 2*t^8.98*y | t^2.07/(g1*g2^8*g3) + t^2.07/(g1^8*g2*g3) + g1^7*g3^7*t^3.08 + g2^7*g3^7*t^3.08 + g1^7*g2^7*t^3.1 + g1^4*g2^4*g3^4*t^3.5 + g1*g2*g3^8*t^3.9 + t^4.14/(g1^2*g2^16*g3^2) + t^4.14/(g1^9*g2^9*g3^2) + t^4.14/(g1^16*g2^2*g3^2) + (g3^12*t^4.3)/(g1^2*g2^2) + (g1^5*g3^5*t^4.33)/g2^2 + (g2^5*g3^5*t^4.33)/g1^2 + (g1^12*t^4.35)/(g2^2*g3^2) + (g1^5*g2^5*t^4.35)/g3^2 + (g2^12*t^4.35)/(g1^2*g3^2) + (g1^6*g3^6*t^5.15)/g2^8 + (2*g3^6*t^5.15)/(g1*g2) + (g2^6*g3^6*t^5.15)/g1^8 + (g1^6*t^5.18)/(g2*g3) + (g2^6*t^5.18)/(g1*g3) + (g1^3*g3^3*t^5.58)/g2^4 + (g2^3*g3^3*t^5.58)/g1^4 - 3*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g1^7*t^6.02)/g3^7 - (g2^7*t^6.02)/g3^7 + g1^14*g3^14*t^6.16 + g1^7*g2^7*g3^14*t^6.16 + g2^14*g3^14*t^6.16 + g1^14*g2^7*g3^7*t^6.18 + g1^7*g2^14*g3^7*t^6.18 + g1^14*g2^14*t^6.21 + t^6.22/(g1^3*g2^24*g3^3) + t^6.22/(g1^10*g2^17*g3^3) + t^6.22/(g1^17*g2^10*g3^3) + t^6.22/(g1^24*g2^3*g3^3) + (g3^11*t^6.38)/(g1^3*g2^10) + (g3^11*t^6.38)/(g1^10*g2^3) + (g1^4*g3^4*t^6.4)/g2^10 + (g3^4*t^6.4)/(g1^3*g2^3) + (g2^4*g3^4*t^6.4)/g1^10 + (g1^11*t^6.42)/(g2^10*g3^3) + (g1^4*t^6.42)/(g2^3*g3^3) + (g2^4*t^6.42)/(g1^3*g3^3) + (g2^11*t^6.42)/(g1^10*g3^3) + g1^11*g2^4*g3^11*t^6.58 + g1^4*g2^11*g3^11*t^6.58 + g1^11*g2^11*g3^4*t^6.61 - (g1*g3*t^6.82)/g2^6 - (g2*g3*t^6.82)/g1^6 - (g1*g2*t^6.85)/g3^6 + g1^8*g2*g3^15*t^6.98 + g1*g2^8*g3^15*t^6.98 + g1^8*g2^8*g3^8*t^7.01 + (g1^5*g3^5*t^7.22)/g2^16 + (g3^5*t^7.22)/(g1^2*g2^9) + (g3^5*t^7.22)/(g1^9*g2^2) + (g2^5*g3^5*t^7.22)/g1^16 - t^7.25/(g1^2*g2^2*g3^2) - (g1^5*t^7.27)/(g2^2*g3^9) - (g2^5*t^7.27)/(g1^2*g3^9) + (g1^5*g3^19*t^7.38)/g2^2 + (g2^5*g3^19*t^7.38)/g1^2 + (g1^12*g3^12*t^7.41)/g2^2 + 3*g1^5*g2^5*g3^12*t^7.41 + (g2^12*g3^12*t^7.41)/g1^2 + (g1^19*g3^5*t^7.43)/g2^2 + 2*g1^12*g2^5*g3^5*t^7.43 + 2*g1^5*g2^12*g3^5*t^7.43 + (g2^19*g3^5*t^7.43)/g1^2 + (g1^19*g2^5*t^7.46)/g3^2 + (g1^12*g2^12*t^7.46)/g3^2 + (g1^5*g2^19*t^7.46)/g3^2 + (g1^2*g3^2*t^7.65)/g2^12 + (g3^2*t^7.65)/(g1^5*g2^5) + (g2^2*g3^2*t^7.65)/g1^12 + g1^2*g2^2*g3^16*t^7.81 - (g3^6*t^8.05)/(g1^8*g2^8) - (g1^6*t^8.07)/(g2^15*g3) - (4*t^8.07)/(g1*g2^8*g3) - (4*t^8.07)/(g1^8*g2*g3) - (g2^6*t^8.07)/(g1^15*g3) - (g1^6*t^8.1)/(g2^8*g3^8) - (2*t^8.1)/(g1*g2*g3^8) - (g2^6*t^8.1)/(g1^8*g3^8) + (g3^20*t^8.21)/(g1*g2) + (g1^13*g3^13*t^8.23)/g2^8 + (2*g1^6*g3^13*t^8.23)/g2 + (2*g2^6*g3^13*t^8.23)/g1 + (g2^13*g3^13*t^8.23)/g1^8 + (g1^13*g3^6*t^8.26)/g2 + g1^6*g2^6*g3^6*t^8.26 + (g2^13*g3^6*t^8.26)/g1 + t^8.29/(g1^4*g2^32*g3^4) + t^8.29/(g1^11*g2^25*g3^4) + t^8.29/(g1^18*g2^18*g3^4) + t^8.29/(g1^25*g2^11*g3^4) + t^8.29/(g1^32*g2^4*g3^4) + (g3^10*t^8.45)/(g1^4*g2^18) + (g3^10*t^8.45)/(g1^11*g2^11) + (g3^10*t^8.45)/(g1^18*g2^4) + (g1^3*g3^3*t^8.47)/g2^18 + (g3^3*t^8.47)/(g1^4*g2^11) + (g3^3*t^8.47)/(g1^11*g2^4) + (g2^3*g3^3*t^8.47)/g1^18 + (g1^10*t^8.5)/(g2^18*g3^4) + (g1^3*t^8.5)/(g2^11*g3^4) + t^8.5/(g1^4*g2^4*g3^4) + (g2^3*t^8.5)/(g1^11*g3^4) + (g2^10*t^8.5)/(g1^18*g3^4) + (g3^24*t^8.61)/(g1^4*g2^4) + (g1^3*g3^17*t^8.63)/g2^4 + (g2^3*g3^17*t^8.63)/g1^4 + (2*g1^10*g3^10*t^8.66)/g2^4 + 2*g1^3*g2^3*g3^10*t^8.66 + (2*g2^10*g3^10*t^8.66)/g1^4 + (g1^17*g3^3*t^8.68)/g2^4 + g1^10*g2^3*g3^3*t^8.68 + g1^3*g2^10*g3^3*t^8.68 + (g2^17*g3^3*t^8.68)/g1^4 + (g1^24*t^8.7)/(g2^4*g3^4) + (g1^17*g2^3*t^8.7)/g3^4 + (g1^10*g2^10*t^8.7)/g3^4 + (g1^3*g2^17*t^8.7)/g3^4 + (g2^24*t^8.7)/(g1^4*g3^4) - t^8.9/(g1^7*g2^7) + t^8.94/g3^14 - t^4.25/(g1^2*g2^2*g3^2*y) - t^6.32/(g1^3*g2^10*g3^3*y) - t^6.32/(g1^10*g2^3*g3^3*y) + t^7.14/(g1^9*g2^9*g3^2*y) + (g1^6*g3^6*t^8.15)/(g2^8*y) + (2*g3^6*t^8.15)/(g1*g2*y) + (g2^6*g3^6*t^8.15)/(g1^8*y) + (2*g1^6*t^8.18)/(g2*g3*y) + (2*g2^6*t^8.18)/(g1*g3*y) - t^8.39/(g1^4*g2^18*g3^4*y) - t^8.39/(g1^11*g2^11*g3^4*y) - t^8.39/(g1^18*g2^4*g3^4*y) + (g1^3*g3^3*t^8.58)/(g2^4*y) + (g2^3*g3^3*t^8.58)/(g1^4*y) + (g3^7*t^8.98)/(g1^7*y) + (g3^7*t^8.98)/(g2^7*y) - (t^4.25*y)/(g1^2*g2^2*g3^2) - (t^6.32*y)/(g1^3*g2^10*g3^3) - (t^6.32*y)/(g1^10*g2^3*g3^3) + (t^7.14*y)/(g1^9*g2^9*g3^2) + (g1^6*g3^6*t^8.15*y)/g2^8 + (2*g3^6*t^8.15*y)/(g1*g2) + (g2^6*g3^6*t^8.15*y)/g1^8 + (2*g1^6*t^8.18*y)/(g2*g3) + (2*g2^6*t^8.18*y)/(g1*g3) - (t^8.39*y)/(g1^4*g2^18*g3^4) - (t^8.39*y)/(g1^11*g2^11*g3^4) - (t^8.39*y)/(g1^18*g2^4*g3^4) + (g1^3*g3^3*t^8.58*y)/g2^4 + (g2^3*g3^3*t^8.58*y)/g1^4 + (g3^7*t^8.98*y)/g1^7 + (g3^7*t^8.98*y)/g2^7 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
211 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_3M_5$ | 0.7262 | 0.8734 | 0.8315 | [X:[], M:[0.8033, 1.1538, 0.8891, 0.8033, 1.1109], q:[0.6209, 0.5758], qb:[0.5758, 0.5351], phi:[0.4231]] | 2*t^2.41 + 2*t^3.33 + 2*t^3.46 + t^3.47 + t^4.48 + 2*t^4.6 + 3*t^4.72 + t^4.74 + 3*t^4.82 + 2*t^4.86 + t^4.99 + 3*t^5.74 + 2*t^5.87 - 6*t^6. - t^4.27/y - t^4.27*y | detail |