Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
951 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ | 0.7409 | 0.9251 | 0.8009 | [M:[1.0, 0.8474, 0.8238, 1.0236, 0.9764, 0.6908], q:[0.5763, 0.4237], qb:[0.5999, 0.5527], phi:[0.4618]] | [M:[[0, 0], [-4, -4], [-6, -2], [2, -2], [-2, 2], [5, 5]], q:[[2, 2], [-2, -2]], qb:[[4, 0], [0, 4]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{3}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{1}$, ${ }M_{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{6}$, ${ }M_{2}M_{6}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{6}$, ${ }M_{2}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{5}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$ | ${}$ | -2 | t^2.072 + t^2.471 + t^2.542 + t^2.771 + t^2.929 + t^3. + t^3.071 + t^3.387 + t^4.145 + t^4.315 + t^4.386 + t^4.456 + t^4.544 + t^4.614 + t^4.702 + t^4.772 + 3*t^4.843 + t^4.914 + t^4.943 + t^4.985 + t^5.001 + t^5.014 + t^5.072 + t^5.084 + t^5.143 + t^5.242 + t^5.313 + t^5.4 + t^5.459 + t^5.471 + 2*t^5.542 + t^5.7 + t^5.771 + t^5.842 + t^5.858 - 2*t^6. - t^6.071 + t^6.158 + t^6.217 + t^6.316 + t^6.387 + t^6.616 + t^6.687 + 2*t^6.774 + t^6.786 + t^6.845 + t^6.857 + 3*t^6.916 + t^6.928 + t^6.986 + t^7.015 + t^7.057 + t^7.074 + 2*t^7.086 + t^7.145 + t^7.157 + t^7.173 + t^7.215 + t^7.228 + 2*t^7.244 + 3*t^7.315 + 3*t^7.386 + t^7.414 + t^7.456 + 2*t^7.473 + t^7.485 + t^7.527 + t^7.531 + t^7.544 + t^7.556 + 3*t^7.614 + t^7.627 + t^7.631 + 2*t^7.702 + t^7.714 + t^7.756 + 3*t^7.772 + t^7.785 + 2*t^7.843 + t^7.855 + t^7.872 + 2*t^7.914 + t^7.943 + t^7.985 - t^8.001 + 2*t^8.014 + t^8.056 - 4*t^8.072 + t^8.084 + t^8.089 - 2*t^8.143 + t^8.159 + t^8.172 - t^8.214 + 2*t^8.23 + t^8.242 + t^8.289 + 2*t^8.313 + t^8.33 + t^8.388 + t^8.459 - 2*t^8.471 - 3*t^8.542 - t^8.613 + t^8.629 + t^8.688 + t^8.759 - 2*t^8.771 + t^8.787 - t^8.842 + 2*t^8.846 + t^8.917 - 3*t^8.929 + 3*t^8.988 - t^4.386/y - t^6.458/y - t^6.857/y - t^6.928/y - t^7.157/y + t^7.544/y + (2*t^7.614)/y + (2*t^7.843)/y + t^7.914/y + t^8.001/y + t^8.014/y + t^8.072/y + t^8.143/y + t^8.242/y + (2*t^8.313)/y + t^8.4/y + t^8.459/y + (2*t^8.471)/y - t^8.53/y + (2*t^8.542)/y + t^8.613/y + t^8.7/y + t^8.771/y + t^8.842/y + t^8.858/y + t^8.929/y - t^4.386*y - t^6.458*y - t^6.857*y - t^6.928*y - t^7.157*y + t^7.544*y + 2*t^7.614*y + 2*t^7.843*y + t^7.914*y + t^8.001*y + t^8.014*y + t^8.072*y + t^8.143*y + t^8.242*y + 2*t^8.313*y + t^8.4*y + t^8.459*y + 2*t^8.471*y - t^8.53*y + 2*t^8.542*y + t^8.613*y + t^8.7*y + t^8.771*y + t^8.842*y + t^8.858*y + t^8.929*y | g1^5*g2^5*t^2.072 + t^2.471/(g1^6*g2^2) + t^2.542/(g1^4*g2^4) + t^2.771/(g1^2*g2^2) + (g2^2*t^2.929)/g1^2 + t^3. + (g1^2*t^3.071)/g2^2 + g1^2*g2^6*t^3.387 + g1^10*g2^10*t^4.145 + (g2*t^4.315)/g1^3 + t^4.386/(g1*g2) + (g1*t^4.456)/g2^3 + (g2^3*t^4.544)/g1 + g1*g2*t^4.614 + (g2^7*t^4.702)/g1 + g1*g2^5*t^4.772 + 3*g1^3*g2^3*t^4.843 + g1^5*g2*t^4.914 + t^4.943/(g1^12*g2^4) + (g1^7*t^4.985)/g2 + g1^3*g2^7*t^5.001 + t^5.014/(g1^10*g2^6) + g1^5*g2^5*t^5.072 + t^5.084/(g1^8*g2^8) + g1^7*g2^3*t^5.143 + t^5.242/(g1^8*g2^4) + t^5.313/(g1^6*g2^6) + t^5.4/g1^8 + g1^7*g2^11*t^5.459 + t^5.471/(g1^6*g2^2) + (2*t^5.542)/(g1^4*g2^4) + t^5.7/g1^4 + t^5.771/(g1^2*g2^2) + t^5.842/g2^4 + (g2^4*t^5.858)/g1^4 - 2*t^6. - (g1^2*t^6.071)/g2^2 + g2^4*t^6.158 + g1^15*g2^15*t^6.217 + g2^8*t^6.316 + g1^2*g2^6*t^6.387 + g1^4*g2^8*t^6.616 + g1^6*g2^6*t^6.687 + 2*g1^4*g2^12*t^6.774 + t^6.786/(g1^9*g2) + g1^6*g2^10*t^6.845 + t^6.857/(g1^7*g2^3) + 3*g1^8*g2^8*t^6.916 + t^6.928/(g1^5*g2^5) + g1^10*g2^6*t^6.986 + (g2*t^7.015)/g1^7 + g1^12*g2^4*t^7.057 + g1^8*g2^12*t^7.074 + (2*t^7.086)/(g1^5*g2) + g1^10*g2^10*t^7.145 + t^7.157/(g1^3*g2^3) + (g2^5*t^7.173)/g1^7 + g1^12*g2^8*t^7.215 + t^7.228/(g1*g2^5) + (2*g2^3*t^7.244)/g1^5 + (3*g2*t^7.315)/g1^3 + (3*t^7.386)/(g1*g2) + t^7.414/(g1^18*g2^6) + (g1*t^7.456)/g2^3 + (2*g2^5*t^7.473)/g1^3 + t^7.485/(g1^16*g2^8) + (g1^3*t^7.527)/g2^5 + g1^12*g2^16*t^7.531 + (g2^3*t^7.544)/g1 + t^7.556/(g1^14*g2^10) + 3*g1*g2*t^7.614 + t^7.627/(g1^12*g2^12) + (g2^9*t^7.631)/g1^3 + (2*g2^7*t^7.702)/g1 + t^7.714/(g1^14*g2^6) + (g1^5*t^7.756)/g2^3 + 3*g1*g2^5*t^7.772 + t^7.785/(g1^12*g2^8) + 2*g1^3*g2^3*t^7.843 + t^7.855/(g1^10*g2^10) + t^7.872/(g1^14*g2^2) + 2*g1^5*g2*t^7.914 + t^7.943/(g1^12*g2^4) + (g1^7*t^7.985)/g2 - g1^3*g2^7*t^8.001 + (2*t^8.014)/(g1^10*g2^6) + (g1^9*t^8.056)/g2^3 - 4*g1^5*g2^5*t^8.072 + t^8.084/(g1^8*g2^8) + g1*g2^13*t^8.089 - 2*g1^7*g2^3*t^8.143 + g1^3*g2^11*t^8.159 + t^8.172/(g1^10*g2^2) - g1^9*g2*t^8.214 + 2*g1^5*g2^9*t^8.23 + t^8.242/(g1^8*g2^4) + g1^20*g2^20*t^8.289 + (2*t^8.313)/(g1^6*g2^6) + (g2^2*t^8.33)/g1^10 + g1^5*g2^13*t^8.388 + g1^7*g2^11*t^8.459 - (2*t^8.471)/(g1^6*g2^2) - (3*t^8.542)/(g1^4*g2^4) - t^8.613/(g1^2*g2^6) + (g2^2*t^8.629)/g1^6 + g1^9*g2^13*t^8.688 + g1^11*g2^11*t^8.759 - (2*t^8.771)/(g1^2*g2^2) + (g2^6*t^8.787)/g1^6 - t^8.842/g2^4 + 2*g1^9*g2^17*t^8.846 + g1^11*g2^15*t^8.917 - (3*g2^2*t^8.929)/g1^2 + 3*g1^13*g2^13*t^8.988 - t^4.386/(g1*g2*y) - (g1^4*g2^4*t^6.458)/y - t^6.857/(g1^7*g2^3*y) - t^6.928/(g1^5*g2^5*y) - t^7.157/(g1^3*g2^3*y) + (g2^3*t^7.544)/(g1*y) + (2*g1*g2*t^7.614)/y + (2*g1^3*g2^3*t^7.843)/y + (g1^5*g2*t^7.914)/y + (g1^3*g2^7*t^8.001)/y + t^8.014/(g1^10*g2^6*y) + (g1^5*g2^5*t^8.072)/y + (g1^7*g2^3*t^8.143)/y + t^8.242/(g1^8*g2^4*y) + (2*t^8.313)/(g1^6*g2^6*y) + t^8.4/(g1^8*y) + (g1^7*g2^11*t^8.459)/y + (2*t^8.471)/(g1^6*g2^2*y) - (g1^9*g2^9*t^8.53)/y + (2*t^8.542)/(g1^4*g2^4*y) + t^8.613/(g1^2*g2^6*y) + t^8.7/(g1^4*y) + t^8.771/(g1^2*g2^2*y) + t^8.842/(g2^4*y) + (g2^4*t^8.858)/(g1^4*y) + (g2^2*t^8.929)/(g1^2*y) - (t^4.386*y)/(g1*g2) - g1^4*g2^4*t^6.458*y - (t^6.857*y)/(g1^7*g2^3) - (t^6.928*y)/(g1^5*g2^5) - (t^7.157*y)/(g1^3*g2^3) + (g2^3*t^7.544*y)/g1 + 2*g1*g2*t^7.614*y + 2*g1^3*g2^3*t^7.843*y + g1^5*g2*t^7.914*y + g1^3*g2^7*t^8.001*y + (t^8.014*y)/(g1^10*g2^6) + g1^5*g2^5*t^8.072*y + g1^7*g2^3*t^8.143*y + (t^8.242*y)/(g1^8*g2^4) + (2*t^8.313*y)/(g1^6*g2^6) + (t^8.4*y)/g1^8 + g1^7*g2^11*t^8.459*y + (2*t^8.471*y)/(g1^6*g2^2) - g1^9*g2^9*t^8.53*y + (2*t^8.542*y)/(g1^4*g2^4) + (t^8.613*y)/(g1^2*g2^6) + (t^8.7*y)/g1^4 + (t^8.771*y)/(g1^2*g2^2) + (t^8.842*y)/g2^4 + (g2^4*t^8.858*y)/g1^4 + (g2^2*t^8.929*y)/g1^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
1464 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}X_{1}$ | 0.6692 | 0.8294 | 0.8069 | [X:[1.4271], M:[1.0, 0.7083, 0.5729, 1.1353, 0.8647, 0.8647], q:[0.6459, 0.3541], qb:[0.7812, 0.5105], phi:[0.4271]] | t^2.125 + t^2.562 + 2*t^2.594 + t^3. + t^3.406 + t^3.469 + t^3.875 + t^4.25 + 2*t^4.281 + t^4.344 + 2*t^4.687 + t^4.719 + t^4.75 + t^5.125 + 4*t^5.156 + 2*t^5.188 + 2*t^5.562 + t^5.594 + 2*t^5.968 - t^6. - t^4.281/y - t^4.281*y | detail | |
1468 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{5}M_{6}$ | 0.6844 | 0.8552 | 0.8003 | [M:[1.0, 0.6894, 0.8011, 0.8883, 1.1117, 0.8883], q:[0.6553, 0.3447], qb:[0.5436, 0.767], phi:[0.4223]] | t^2.068 + t^2.403 + t^2.534 + 2*t^2.665 + t^3. + t^3.335 + t^3.932 + t^4.136 + 2*t^4.267 + t^4.471 + t^4.529 + 2*t^4.602 + t^4.733 + t^4.806 + t^4.864 + t^4.937 + 3*t^5.068 + 4*t^5.199 + 2*t^5.33 + t^5.403 + 2*t^5.534 + t^5.738 + 2*t^5.869 - t^6. - t^4.267/y - t^4.267*y | detail | |
2094 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}X_{1}$ | 0.6006 | 0.757 | 0.7934 | [X:[1.5829], M:[1.0, 0.6685, 0.4171, 1.2513, 0.7487, 0.9144], q:[0.6658, 0.3342], qb:[0.9171, 0.4144], phi:[0.4171]] | t^2.005 + t^2.246 + t^2.503 + t^2.743 + t^3. + t^3.241 + t^3.497 + t^3.738 + t^3.754 + t^4.011 + t^4.251 + t^4.492 + t^4.508 + 3*t^4.749 + t^4.989 + 2*t^5.005 + 3*t^5.246 + 2*t^5.487 + t^5.503 + 3*t^5.743 + 2*t^5.984 - t^4.251/y - t^4.251*y | detail | |
2092 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}X_{1}$ | 0.6791 | 0.8471 | 0.8017 | [X:[1.3804], M:[1.0, 0.7914, 0.6196, 1.1718, 0.8282, 0.7608], q:[0.6043, 0.3957], qb:[0.7761, 0.4326], phi:[0.4478]] | t^2.282 + t^2.374 + t^2.485 + t^2.687 + t^3. + t^3.111 + t^3.515 + t^3.828 + t^3.939 + t^4.141 + t^4.344 + t^4.454 + t^4.565 + t^4.656 + t^4.748 + t^4.767 + t^4.859 + 3*t^4.969 + t^5.061 + t^5.172 + t^5.282 + t^5.374 + t^5.393 + t^5.485 + t^5.595 + t^5.687 + 2*t^5.798 - t^6. - t^4.344/y - t^4.344*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
598 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}^{2}$ | 0.7203 | 0.8855 | 0.8134 | [M:[1.0, 0.8402, 0.8171, 1.0231, 0.9769], q:[0.5799, 0.4201], qb:[0.603, 0.5568], phi:[0.4601]] | t^2.451 + t^2.521 + t^2.76 + t^2.931 + t^3. + t^3.069 + t^3.41 + t^3.901 + t^4.311 + t^4.38 + t^4.449 + t^4.721 + t^4.79 + 2*t^4.859 + t^4.903 + t^4.929 + t^4.972 + t^4.998 + t^5.041 + t^5.212 + t^5.281 + t^5.382 + t^5.451 + 2*t^5.521 + t^5.691 + t^5.76 + t^5.83 + t^5.861 - 2*t^6. - t^4.38/y - t^4.38*y | detail |