Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
90 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ M_1q_1\tilde{q}_1$ + $ M_1\phi_1\tilde{q}_2^2$ 0.6279 0.7568 0.8297 [X:[], M:[0.7082], q:[0.823, 0.823], qb:[0.4689, 0.4689], phi:[0.3541]] [X:[], M:[[-4]], q:[[1], [1]], qb:[[3], [3]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_1^2$, $ M_1\phi_1^2$, $ \phi_1^4$, $ q_1q_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$ $M_1q_2\tilde{q}_1$, $ M_1\phi_1\tilde{q}_1^2$, $ \phi_1^3\tilde{q}_1^2$, $ M_1q_2\tilde{q}_2$, $ \phi_1^3\tilde{q}_1\tilde{q}_2$, $ \phi_1^3\tilde{q}_2^2$ 3 2*t^2.12 + t^2.81 + 6*t^3.88 + 3*t^4.25 + 3*t^4.94 + t^5.63 + 3*t^6. + 4*t^6.37 + 6*t^6.69 - 3*t^7.06 + 15*t^7.75 + t^8.12 + t^8.44 + 5*t^8.5 + t^8.81 - t^4.06/y - (2*t^6.19)/y + t^7.25/y + (4*t^7.94)/y - (3*t^8.31)/y - t^4.06*y - 2*t^6.19*y + t^7.25*y + 4*t^7.94*y - 3*t^8.31*y (2*t^2.12)/g1^4 + g1^6*t^2.81 + 6*g1^4*t^3.88 + (3*t^4.25)/g1^8 + 3*g1^2*t^4.94 + g1^12*t^5.63 + 3*t^6. + (4*t^6.37)/g1^12 + 6*g1^10*t^6.69 - (3*t^7.06)/g1^2 + 15*g1^8*t^7.75 + t^8.12/g1^4 + g1^18*t^8.44 + (5*t^8.5)/g1^16 + g1^6*t^8.81 - t^4.06/(g1^2*y) - (2*t^6.19)/(g1^6*y) + t^7.25/(g1^8*y) + (4*g1^2*t^7.94)/y - (3*t^8.31)/(g1^10*y) - (t^4.06*y)/g1^2 - (2*t^6.19*y)/g1^6 + (t^7.25*y)/g1^8 + 4*g1^2*t^7.94*y - (3*t^8.31*y)/g1^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
147 $\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ M_1q_1\tilde{q}_1$ + $ M_1\phi_1\tilde{q}_2^2$ + $ \tilde{q}_1^2\tilde{q}_2^2$ + $ M_1X_1$ + $ \phi_1^2X_2$ 0.5833 0.6667 0.875 [X:[1.3333, 1.3333], M:[0.6667], q:[0.8333, 0.8333], qb:[0.5, 0.5], phi:[0.3333]] t^3. + 8*t^4. + t^5. - 8*t^6. - t^4./y - t^4.*y detail {a: 7/12, c: 2/3, X1: 4/3, X2: 4/3, M1: 2/3, q1: 5/6, q2: 5/6, qb1: 1/2, qb2: 1/2, phi1: 1/3}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
60 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ M_1q_1\tilde{q}_1$ 0.628 0.7573 0.8293 [X:[], M:[0.7035], q:[0.8228, 0.8228], qb:[0.4737, 0.4628], phi:[0.3545]] t^2.11 + t^2.13 + t^2.81 + t^3.84 + 2*t^3.86 + t^3.87 + t^3.89 + t^3.91 + t^4.22 + t^4.24 + t^4.25 + t^4.92 + 2*t^4.94 + t^5.62 + t^5.95 + 2*t^5.97 + t^5.98 - t^6. - t^4.06/y - t^4.06*y detail