Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
886 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{6}q_{2}\tilde{q}_{2}$ 0.6381 0.8072 0.7905 [M:[0.7944, 1.2056, 0.7944, 0.7056, 1.1472, 1.1472], q:[0.75, 0.4556], qb:[0.3972, 0.3972], phi:[0.5]] [M:[[1, 1], [-1, -1], [1, 1], [-1, -1], [0, 1], [1, 0]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{5}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{3}q_{1}\tilde{q}_{2}$ ${}M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ -3 t^2.117 + 2*t^2.383 + t^3. + 4*t^3.442 + 2*t^3.883 + 2*t^4.058 + 2*t^4.233 + 2*t^4.5 + 3*t^4.767 + t^5.117 + 2*t^5.383 + 4*t^5.558 + 6*t^5.825 - 3*t^6. + 4*t^6.267 + 2*t^6.35 + 4*t^6.442 + 2*t^6.617 + 11*t^6.883 - 2*t^7.058 + 4*t^7.15 + t^7.233 + 4*t^7.325 + 2*t^7.5 + 4*t^7.675 + 5*t^7.767 + 6*t^7.942 - 2*t^8.117 + 8*t^8.208 + 2*t^8.292 - 6*t^8.383 + 3*t^8.467 + 6*t^8.65 + 2*t^8.733 + 4*t^8.825 - t^4.5/y - t^6.617/y - t^6.883/y + (2*t^7.058)/y + (2*t^7.5)/y + t^7.767/y - (2*t^7.942)/y + (2*t^8.117)/y + (3*t^8.383)/y + (4*t^8.558)/y - t^8.733/y + (8*t^8.825)/y - t^4.5*y - t^6.617*y - t^6.883*y + 2*t^7.058*y + 2*t^7.5*y + t^7.767*y - 2*t^7.942*y + 2*t^8.117*y + 3*t^8.383*y + 4*t^8.558*y - t^8.733*y + 8*t^8.825*y t^2.117/(g1*g2) + 2*g1*g2*t^2.383 + t^3. + 2*g1*t^3.442 + 2*g2*t^3.442 + g1^2*t^3.883 + g2^2*t^3.883 + t^4.058/g1 + t^4.058/g2 + (2*t^4.233)/(g1^2*g2^2) + 2*t^4.5 + 3*g1^2*g2^2*t^4.767 + t^5.117/(g1*g2) + 2*g1*g2*t^5.383 + (2*t^5.558)/g1 + (2*t^5.558)/g2 + 3*g1^2*g2*t^5.825 + 3*g1*g2^2*t^5.825 - 3*t^6. + 2*g1^3*g2*t^6.267 + 2*g1*g2^3*t^6.267 + (2*t^6.35)/(g1^3*g2^3) + 2*g1*t^6.442 + 2*g2*t^6.442 + (2*t^6.617)/(g1*g2) + 3*g1^2*t^6.883 + 5*g1*g2*t^6.883 + 3*g2^2*t^6.883 - t^7.058/g1 - t^7.058/g2 + 4*g1^3*g2^3*t^7.15 + t^7.233/(g1^2*g2^2) + 2*g1^3*t^7.325 + 2*g2^3*t^7.325 + 2*t^7.5 + (2*t^7.675)/(g1*g2^2) + (2*t^7.675)/(g1^2*g2) + g1^4*t^7.767 + 3*g1^2*g2^2*t^7.767 + g2^4*t^7.767 + 2*g1*t^7.942 + (g1^2*t^7.942)/g2 + 2*g2*t^7.942 + (g2^2*t^7.942)/g1 + t^8.117/g1^2 + t^8.117/g2^2 - (4*t^8.117)/(g1*g2) + 4*g1^3*g2^2*t^8.208 + 4*g1^2*g2^3*t^8.208 + t^8.292/(g1^2*g2^3) + t^8.292/(g1^3*g2^2) - 6*g1*g2*t^8.383 + (3*t^8.467)/(g1^4*g2^4) + 3*g1^4*g2^2*t^8.65 + 3*g1^2*g2^4*t^8.65 + (2*t^8.733)/(g1^2*g2^2) + 2*g1^2*g2*t^8.825 + 2*g1*g2^2*t^8.825 - t^4.5/y - t^6.617/(g1*g2*y) - (g1*g2*t^6.883)/y + t^7.058/(g1*y) + t^7.058/(g2*y) + (2*t^7.5)/y + (g1^2*g2^2*t^7.767)/y - (g1*t^7.942)/y - (g2*t^7.942)/y + (2*t^8.117)/(g1*g2*y) + (3*g1*g2*t^8.383)/y + (2*t^8.558)/(g1*y) + (2*t^8.558)/(g2*y) - t^8.733/(g1^2*g2^2*y) + (4*g1^2*g2*t^8.825)/y + (4*g1*g2^2*t^8.825)/y - t^4.5*y - (t^6.617*y)/(g1*g2) - g1*g2*t^6.883*y + (t^7.058*y)/g1 + (t^7.058*y)/g2 + 2*t^7.5*y + g1^2*g2^2*t^7.767*y - g1*t^7.942*y - g2*t^7.942*y + (2*t^8.117*y)/(g1*g2) + 3*g1*g2*t^8.383*y + (2*t^8.558*y)/g1 + (2*t^8.558*y)/g2 - (t^8.733*y)/(g1^2*g2^2) + 4*g1^2*g2*t^8.825*y + 4*g1*g2^2*t^8.825*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
571 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ 0.652 0.8312 0.7844 [M:[0.8043, 1.1957, 0.8043, 0.6957, 1.1326], q:[0.75, 0.4457], qb:[0.4217, 0.3826], phi:[0.5]] t^2.087 + 2*t^2.413 + t^2.485 + t^3. + 2*t^3.398 + t^3.515 + t^3.796 + t^3.985 + t^4.03 + t^4.102 + 2*t^4.174 + 2*t^4.5 + t^4.572 + 3*t^4.826 + 2*t^4.898 + t^4.97 + t^5.087 + 2*t^5.413 + 3*t^5.485 + t^5.602 + 3*t^5.811 + 2*t^5.883 + t^5.928 - 2*t^6. - t^4.5/y - t^4.5*y detail