Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
883 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2M_3$ + $ \phi_1^4$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_5q_2\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_2^2$ 0.6722 0.8699 0.7727 [X:[], M:[0.8081, 1.1919, 0.8081, 0.7105, 1.1447, 0.6733], q:[0.75, 0.4419], qb:[0.3947, 0.4133], phi:[0.5]] [X:[], M:[[1, 1], [-1, -1], [1, 1], [-2, 0], [1, 0], [0, -2]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_4$, $ M_1$, $ M_3$, $ q_2\tilde{q}_1$, $ \phi_1^2$, $ M_5$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ M_6^2$, $ \phi_1q_2\tilde{q}_2$, $ M_4M_6$, $ \phi_1q_2^2$, $ M_4^2$, $ M_1M_6$, $ M_3M_6$, $ M_6q_2\tilde{q}_1$, $ M_1M_4$, $ M_3M_4$, $ M_4q_2\tilde{q}_1$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_6\phi_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_4\phi_1^2$, $ M_1\phi_1^2$, $ M_3\phi_1^2$, $ M_5M_6$, $ M_6q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_6q_1\tilde{q}_2$, $ M_4M_5$, $ M_4q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_2$, $ M_1M_5$, $ M_3M_5$, $ M_3q_1\tilde{q}_1$, $ M_3q_1\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ . -2 t^2.02 + t^2.13 + 2*t^2.42 + t^2.51 + t^3. + 2*t^3.43 + t^3.49 + t^3.92 + t^4.01 + t^4.04 + t^4.07 + 2*t^4.15 + t^4.26 + 2*t^4.44 + t^4.53 + 2*t^4.56 + t^4.64 + 3*t^4.85 + 2*t^4.93 + 2*t^5.02 + t^5.13 + 2*t^5.42 + 2*t^5.45 + 2*t^5.51 + 2*t^5.57 + t^5.62 + 3*t^5.86 + t^5.91 + 2*t^5.94 - 2*t^6. + t^6.03 + t^6.06 + 2*t^6.17 + t^6.2 + 2*t^6.28 + 2*t^6.35 + t^6.39 + 3*t^6.43 + 2*t^6.46 + t^6.49 + t^6.52 + t^6.55 + 3*t^6.58 + 2*t^6.66 + 2*t^6.69 + t^6.77 + 5*t^6.87 + t^6.92 + 2*t^6.95 + 3*t^6.98 - t^7.01 + 2*t^7.04 + t^7.07 + 2*t^7.15 + t^7.26 + 4*t^7.27 + 3*t^7.36 - t^7.41 + 4*t^7.44 + 2*t^7.47 - t^7.5 + 3*t^7.53 + t^7.56 + 2*t^7.59 + t^7.64 + 2*t^7.7 + t^7.75 + 3*t^7.85 + 3*t^7.88 + 2*t^7.93 + 2*t^7.96 + 2*t^7.99 - t^8.02 + 2*t^8.05 + 2*t^8.08 - 2*t^8.13 + t^8.16 + 2*t^8.19 + t^8.22 + 4*t^8.28 + 3*t^8.3 + t^8.33 + t^8.34 + 3*t^8.37 + 2*t^8.41 - 5*t^8.42 + 4*t^8.45 + 2*t^8.48 - 3*t^8.51 + t^8.53 + t^8.54 + t^8.57 + 2*t^8.6 + t^8.62 + 2*t^8.68 + 3*t^8.71 + 3*t^8.77 + 2*t^8.79 + 2*t^8.82 + 4*t^8.86 + 5*t^8.89 + t^8.9 + 3*t^8.94 + 2*t^8.97 - t^4.5/y - t^6.52/y - t^6.63/y - t^6.92/y + t^7.07/y + t^7.15/y + (2*t^7.44)/y + t^7.53/y + (2*t^7.56)/y + t^7.64/y + t^7.85/y + t^7.93/y + t^8.02/y + t^8.08/y + t^8.13/y + t^8.37/y + (2*t^8.42)/y + (2*t^8.45)/y + t^8.48/y + (2*t^8.51)/y - t^8.54/y + (2*t^8.57)/y + t^8.62/y - t^8.65/y - t^8.76/y + (4*t^8.86)/y + (2*t^8.91)/y + (2*t^8.94)/y - t^4.5*y - t^6.52*y - t^6.63*y - t^6.92*y + t^7.07*y + t^7.15*y + 2*t^7.44*y + t^7.53*y + 2*t^7.56*y + t^7.64*y + t^7.85*y + t^7.93*y + t^8.02*y + t^8.08*y + t^8.13*y + t^8.37*y + 2*t^8.42*y + 2*t^8.45*y + t^8.48*y + 2*t^8.51*y - t^8.54*y + 2*t^8.57*y + t^8.62*y - t^8.65*y - t^8.76*y + 4*t^8.86*y + 2*t^8.91*y + 2*t^8.94*y t^2.02/g2^2 + t^2.13/g1^2 + 2*g1*g2*t^2.42 + t^2.51/g2 + t^3. + 2*g1*t^3.43 + g2*t^3.49 + g1*g2*t^3.92 + t^4.01/g2 + t^4.04/g2^4 + t^4.07/g1 + (2*t^4.15)/(g1^2*g2^2) + t^4.26/g1^4 + (2*g1*t^4.44)/g2 + t^4.53/g2^3 + (2*g2*t^4.56)/g1 + t^4.64/(g1^2*g2) + 3*g1^2*g2^2*t^4.85 + 2*g1*t^4.93 + (2*t^5.02)/g2^2 + t^5.13/g1^2 + 2*g1*g2*t^5.42 + (2*g1*t^5.45)/g2^2 + (2*t^5.51)/g2 + (2*t^5.57)/g1 + (g2*t^5.62)/g1^2 + 3*g1^2*g2*t^5.86 + g1*g2^2*t^5.91 + (2*g1*t^5.94)/g2 - 2*t^6. + t^6.03/g2^3 + t^6.06/g2^6 + (2*t^6.17)/(g1^2*g2^4) + t^6.2/g1^3 + (2*t^6.28)/(g1^4*g2^2) + 2*g1^2*g2^2*t^6.35 + t^6.39/g1^6 + 3*g1*t^6.43 + (2*g1*t^6.46)/g2^3 + g2*t^6.49 + t^6.52/g2^2 + t^6.55/g2^5 + (3*t^6.58)/(g1*g2) + (2*t^6.66)/(g1^2*g2^3) + (2*g2*t^6.69)/g1^3 + t^6.77/(g1^4*g2) + 5*g1^2*t^6.87 + g1*g2*t^6.92 + (2*g1*t^6.95)/g2^2 + 3*g2^2*t^6.98 - t^7.01/g2 + (2*t^7.04)/g2^4 + t^7.07/g1 + (2*t^7.15)/(g1^2*g2^2) + t^7.26/g1^4 + 4*g1^3*g2^3*t^7.27 + 3*g1^2*g2*t^7.36 - g1*g2^2*t^7.41 + (4*g1*t^7.44)/g2 + (2*g1*t^7.47)/g2^4 - t^7.5 + (3*t^7.53)/g2^3 + (g2*t^7.56)/g1 + (2*t^7.59)/(g1*g2^2) + t^7.64/(g1^2*g2) + (2*t^7.7)/g1^3 + (g2*t^7.75)/g1^4 + 3*g1^2*g2^2*t^7.85 + (3*g1^2*t^7.88)/g2 + 2*g1*t^7.93 + (2*g1*t^7.96)/g2^3 + 2*g2*t^7.99 - t^8.02/g2^2 + t^8.05/g2^5 + (g2^2*t^8.05)/g1 + t^8.08/g2^8 + t^8.08/(g1*g2) - (2*t^8.13)/g1^2 + t^8.16/(g1^2*g2^3) + (2*t^8.19)/(g1^2*g2^6) + t^8.22/(g1^3*g2^2) + 4*g1^3*g2^2*t^8.28 + (3*t^8.3)/(g1^4*g2^4) + t^8.33/g1^5 + g1^2*g2^3*t^8.34 + 3*g1^2*t^8.37 + (2*t^8.41)/(g1^6*g2^2) - 5*g1*g2*t^8.42 + (4*g1*t^8.45)/g2^2 + (2*g1*t^8.48)/g2^5 - (3*t^8.51)/g2 + t^8.53/g1^8 + t^8.54/g2^4 + t^8.57/g2^7 + (2*t^8.6)/(g1*g2^3) + (g2*t^8.62)/g1^2 + (2*t^8.68)/(g1^2*g2^5) + (3*t^8.71)/(g1^3*g2) + 3*g1^3*g2^3*t^8.77 + (2*t^8.79)/(g1^4*g2^3) + (2*g2*t^8.82)/g1^5 + 4*g1^2*g2*t^8.86 + (5*g1^2*t^8.89)/g2^2 + t^8.9/(g1^6*g2) + (3*g1*t^8.94)/g2 + (2*g1*t^8.97)/g2^4 - t^4.5/y - t^6.52/(g2^2*y) - t^6.63/(g1^2*y) - (g1*g2*t^6.92)/y + t^7.07/(g1*y) + t^7.15/(g1^2*g2^2*y) + (2*g1*t^7.44)/(g2*y) + t^7.53/(g2^3*y) + (2*g2*t^7.56)/(g1*y) + t^7.64/(g1^2*g2*y) + (g1^2*g2^2*t^7.85)/y + (g1*t^7.93)/y + t^8.02/(g2^2*y) + t^8.08/(g1*g2*y) + t^8.13/(g1^2*y) + (g1^2*t^8.37)/y + (2*g1*g2*t^8.42)/y + (2*g1*t^8.45)/(g2^2*y) + (g2^2*t^8.48)/y + (2*t^8.51)/(g2*y) - t^8.54/(g2^4*y) + (2*t^8.57)/(g1*y) + (g2*t^8.62)/(g1^2*y) - t^8.65/(g1^2*g2^2*y) - t^8.76/(g1^4*y) + (4*g1^2*g2*t^8.86)/y + (2*g1*g2^2*t^8.91)/y + (2*g1*t^8.94)/(g2*y) - t^4.5*y - (t^6.52*y)/g2^2 - (t^6.63*y)/g1^2 - g1*g2*t^6.92*y + (t^7.07*y)/g1 + (t^7.15*y)/(g1^2*g2^2) + (2*g1*t^7.44*y)/g2 + (t^7.53*y)/g2^3 + (2*g2*t^7.56*y)/g1 + (t^7.64*y)/(g1^2*g2) + g1^2*g2^2*t^7.85*y + g1*t^7.93*y + (t^8.02*y)/g2^2 + (t^8.08*y)/(g1*g2) + (t^8.13*y)/g1^2 + g1^2*t^8.37*y + 2*g1*g2*t^8.42*y + (2*g1*t^8.45*y)/g2^2 + g2^2*t^8.48*y + (2*t^8.51*y)/g2 - (t^8.54*y)/g2^4 + (2*t^8.57*y)/g1 + (g2*t^8.62*y)/g1^2 - (t^8.65*y)/(g1^2*g2^2) - (t^8.76*y)/g1^4 + 4*g1^2*g2*t^8.86*y + 2*g1*g2^2*t^8.91*y + (2*g1*t^8.94*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
567 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2M_3$ + $ \phi_1^4$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_5q_2\tilde{q}_2$ 0.6514 0.8288 0.7859 [X:[], M:[0.8067, 1.1933, 0.8067, 0.7089, 1.1456], q:[0.75, 0.4433], qb:[0.3956, 0.4111], phi:[0.5]] t^2.13 + 2*t^2.42 + t^2.52 + t^3. + 2*t^3.44 + t^3.48 + t^3.92 + t^3.97 + t^4.02 + t^4.06 + t^4.16 + t^4.25 + 2*t^4.55 + t^4.64 + 3*t^4.84 + 2*t^4.94 + t^5.03 + t^5.13 + 2*t^5.42 + t^5.52 + 2*t^5.56 + t^5.61 + 3*t^5.86 + t^5.9 + t^5.95 - 2*t^6. - t^4.5/y - t^4.5*y detail