Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
883 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$ 0.6722 0.8699 0.7727 [M:[0.8081, 1.1919, 0.8081, 0.7105, 1.1447, 0.6733], q:[0.75, 0.4419], qb:[0.3947, 0.4133], phi:[0.5]] [M:[[1, 1], [-1, -1], [1, 1], [-2, 0], [1, 0], [0, -2]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{4}$, ${ }M_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{6}\phi_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -2 t^2.02 + t^2.132 + 2*t^2.424 + t^2.51 + t^3. + 2*t^3.434 + t^3.49 + t^3.924 + t^4.01 + t^4.04 + t^4.066 + 2*t^4.152 + t^4.263 + 2*t^4.444 + t^4.53 + 2*t^4.556 + t^4.642 + 3*t^4.848 + 2*t^4.934 + 2*t^5.02 + t^5.132 + 2*t^5.424 + 2*t^5.454 + 2*t^5.51 + 2*t^5.566 + t^5.622 + 3*t^5.858 + t^5.914 + 2*t^5.944 - 2*t^6. + t^6.03 + t^6.06 + 2*t^6.172 + t^6.197 + 2*t^6.283 + 2*t^6.348 + t^6.395 + 3*t^6.434 + 2*t^6.464 + t^6.49 + t^6.52 + t^6.55 + 3*t^6.576 + 2*t^6.662 + 2*t^6.687 + t^6.773 + 5*t^6.868 + t^6.924 + 2*t^6.954 + 3*t^6.98 - t^7.01 + 2*t^7.04 + t^7.066 + 2*t^7.152 + t^7.263 + 4*t^7.273 + 3*t^7.358 - t^7.414 + 4*t^7.444 + 2*t^7.474 - t^7.5 + 3*t^7.53 + t^7.556 + 2*t^7.586 + t^7.642 + 2*t^7.697 + t^7.753 + 3*t^7.848 + 3*t^7.878 + 2*t^7.934 + 2*t^7.964 + 2*t^7.99 - t^8.02 + t^8.046 + t^8.05 + t^8.076 + t^8.08 - 2*t^8.132 + t^8.162 + 2*t^8.192 + t^8.217 + 4*t^8.283 + 3*t^8.303 + t^8.329 + t^8.338 + 3*t^8.368 + 2*t^8.415 - 5*t^8.424 + 4*t^8.454 + 2*t^8.484 - 3*t^8.51 + t^8.526 + t^8.54 + t^8.57 + 2*t^8.596 + t^8.622 + 2*t^8.682 + 3*t^8.707 + 3*t^8.773 + 2*t^8.793 + 2*t^8.819 + 4*t^8.858 + 5*t^8.888 + t^8.905 + 3*t^8.944 + 2*t^8.974 - t^4.5/y - t^6.52/y - t^6.632/y - t^6.924/y + t^7.066/y + t^7.152/y + (2*t^7.444)/y + t^7.53/y + (2*t^7.556)/y + t^7.642/y + t^7.848/y + t^7.934/y + t^8.02/y + t^8.076/y + t^8.132/y + t^8.368/y + (2*t^8.424)/y + (2*t^8.454)/y + t^8.48/y + (2*t^8.51)/y - t^8.54/y + (2*t^8.566)/y + t^8.622/y - t^8.652/y - t^8.763/y + (4*t^8.858)/y + (2*t^8.914)/y + (2*t^8.944)/y - t^4.5*y - t^6.52*y - t^6.632*y - t^6.924*y + t^7.066*y + t^7.152*y + 2*t^7.444*y + t^7.53*y + 2*t^7.556*y + t^7.642*y + t^7.848*y + t^7.934*y + t^8.02*y + t^8.076*y + t^8.132*y + t^8.368*y + 2*t^8.424*y + 2*t^8.454*y + t^8.48*y + 2*t^8.51*y - t^8.54*y + 2*t^8.566*y + t^8.622*y - t^8.652*y - t^8.763*y + 4*t^8.858*y + 2*t^8.914*y + 2*t^8.944*y t^2.02/g2^2 + t^2.132/g1^2 + 2*g1*g2*t^2.424 + t^2.51/g2 + t^3. + 2*g1*t^3.434 + g2*t^3.49 + g1*g2*t^3.924 + t^4.01/g2 + t^4.04/g2^4 + t^4.066/g1 + (2*t^4.152)/(g1^2*g2^2) + t^4.263/g1^4 + (2*g1*t^4.444)/g2 + t^4.53/g2^3 + (2*g2*t^4.556)/g1 + t^4.642/(g1^2*g2) + 3*g1^2*g2^2*t^4.848 + 2*g1*t^4.934 + (2*t^5.02)/g2^2 + t^5.132/g1^2 + 2*g1*g2*t^5.424 + (2*g1*t^5.454)/g2^2 + (2*t^5.51)/g2 + (2*t^5.566)/g1 + (g2*t^5.622)/g1^2 + 3*g1^2*g2*t^5.858 + g1*g2^2*t^5.914 + (2*g1*t^5.944)/g2 - 2*t^6. + t^6.03/g2^3 + t^6.06/g2^6 + (2*t^6.172)/(g1^2*g2^4) + t^6.197/g1^3 + (2*t^6.283)/(g1^4*g2^2) + 2*g1^2*g2^2*t^6.348 + t^6.395/g1^6 + 3*g1*t^6.434 + (2*g1*t^6.464)/g2^3 + g2*t^6.49 + t^6.52/g2^2 + t^6.55/g2^5 + (3*t^6.576)/(g1*g2) + (2*t^6.662)/(g1^2*g2^3) + (2*g2*t^6.687)/g1^3 + t^6.773/(g1^4*g2) + 5*g1^2*t^6.868 + g1*g2*t^6.924 + (2*g1*t^6.954)/g2^2 + 3*g2^2*t^6.98 - t^7.01/g2 + (2*t^7.04)/g2^4 + t^7.066/g1 + (2*t^7.152)/(g1^2*g2^2) + t^7.263/g1^4 + 4*g1^3*g2^3*t^7.273 + 3*g1^2*g2*t^7.358 - g1*g2^2*t^7.414 + (4*g1*t^7.444)/g2 + (2*g1*t^7.474)/g2^4 - t^7.5 + (3*t^7.53)/g2^3 + (g2*t^7.556)/g1 + (2*t^7.586)/(g1*g2^2) + t^7.642/(g1^2*g2) + (2*t^7.697)/g1^3 + (g2*t^7.753)/g1^4 + 3*g1^2*g2^2*t^7.848 + (3*g1^2*t^7.878)/g2 + 2*g1*t^7.934 + (2*g1*t^7.964)/g2^3 + 2*g2*t^7.99 - t^8.02/g2^2 + (g2^2*t^8.046)/g1 + t^8.05/g2^5 + t^8.076/(g1*g2) + t^8.08/g2^8 - (2*t^8.132)/g1^2 + t^8.162/(g1^2*g2^3) + (2*t^8.192)/(g1^2*g2^6) + t^8.217/(g1^3*g2^2) + 4*g1^3*g2^2*t^8.283 + (3*t^8.303)/(g1^4*g2^4) + t^8.329/g1^5 + g1^2*g2^3*t^8.338 + 3*g1^2*t^8.368 + (2*t^8.415)/(g1^6*g2^2) - 5*g1*g2*t^8.424 + (4*g1*t^8.454)/g2^2 + (2*g1*t^8.484)/g2^5 - (3*t^8.51)/g2 + t^8.526/g1^8 + t^8.54/g2^4 + t^8.57/g2^7 + (2*t^8.596)/(g1*g2^3) + (g2*t^8.622)/g1^2 + (2*t^8.682)/(g1^2*g2^5) + (3*t^8.707)/(g1^3*g2) + 3*g1^3*g2^3*t^8.773 + (2*t^8.793)/(g1^4*g2^3) + (2*g2*t^8.819)/g1^5 + 4*g1^2*g2*t^8.858 + (5*g1^2*t^8.888)/g2^2 + t^8.905/(g1^6*g2) + (3*g1*t^8.944)/g2 + (2*g1*t^8.974)/g2^4 - t^4.5/y - t^6.52/(g2^2*y) - t^6.632/(g1^2*y) - (g1*g2*t^6.924)/y + t^7.066/(g1*y) + t^7.152/(g1^2*g2^2*y) + (2*g1*t^7.444)/(g2*y) + t^7.53/(g2^3*y) + (2*g2*t^7.556)/(g1*y) + t^7.642/(g1^2*g2*y) + (g1^2*g2^2*t^7.848)/y + (g1*t^7.934)/y + t^8.02/(g2^2*y) + t^8.076/(g1*g2*y) + t^8.132/(g1^2*y) + (g1^2*t^8.368)/y + (2*g1*g2*t^8.424)/y + (2*g1*t^8.454)/(g2^2*y) + (g2^2*t^8.48)/y + (2*t^8.51)/(g2*y) - t^8.54/(g2^4*y) + (2*t^8.566)/(g1*y) + (g2*t^8.622)/(g1^2*y) - t^8.652/(g1^2*g2^2*y) - t^8.763/(g1^4*y) + (4*g1^2*g2*t^8.858)/y + (2*g1*g2^2*t^8.914)/y + (2*g1*t^8.944)/(g2*y) - t^4.5*y - (t^6.52*y)/g2^2 - (t^6.632*y)/g1^2 - g1*g2*t^6.924*y + (t^7.066*y)/g1 + (t^7.152*y)/(g1^2*g2^2) + (2*g1*t^7.444*y)/g2 + (t^7.53*y)/g2^3 + (2*g2*t^7.556*y)/g1 + (t^7.642*y)/(g1^2*g2) + g1^2*g2^2*t^7.848*y + g1*t^7.934*y + (t^8.02*y)/g2^2 + (t^8.076*y)/(g1*g2) + (t^8.132*y)/g1^2 + g1^2*t^8.368*y + 2*g1*g2*t^8.424*y + (2*g1*t^8.454*y)/g2^2 + g2^2*t^8.48*y + (2*t^8.51*y)/g2 - (t^8.54*y)/g2^4 + (2*t^8.566*y)/g1 + (g2*t^8.622*y)/g1^2 - (t^8.652*y)/(g1^2*g2^2) - (t^8.763*y)/g1^4 + 4*g1^2*g2*t^8.858*y + 2*g1*g2^2*t^8.914*y + (2*g1*t^8.944*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
567 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ 0.6514 0.8288 0.7859 [M:[0.8067, 1.1933, 0.8067, 0.7089, 1.1456], q:[0.75, 0.4433], qb:[0.3956, 0.4111], phi:[0.5]] t^2.127 + 2*t^2.42 + t^2.517 + t^3. + 2*t^3.437 + t^3.483 + t^3.92 + t^3.967 + t^4.017 + t^4.063 + t^4.16 + t^4.253 + 2*t^4.547 + t^4.643 + 3*t^4.84 + 2*t^4.937 + t^5.033 + t^5.127 + 2*t^5.42 + t^5.517 + 2*t^5.563 + t^5.61 + 3*t^5.857 + t^5.903 + t^5.953 - 2*t^6. - t^4.5/y - t^4.5*y detail