Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
8661 Sp2adj1nf1 $\phi_1^2X_1$ + $ M_1\phi_1q_1^2$ + $ M_2\phi_1q_2^2$ + $ M_3\phi_1^2q_1q_2$ + $ M_4\phi_1q_1q_2$ 1.2082 1.3636 0.8861 [X:[1.6568], M:[0.8581, 0.8581, 0.6865, 0.8581], q:[0.4852, 0.4852], qb:[], phi:[0.1716]] [X:[[0, 2]], M:[[2, -11], [-2, 1], [0, -4], [0, -5]], q:[[-1, 6], [1, 0]], qb:[], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ \phi_1^4$, $ M_1$, $ M_4$, $ M_2$, $ q_1q_2$, $ M_3^2$, $ M_3\phi_1^4$, $ \phi_1^8$, $ \phi_1^3q_2^2$, $ \phi_1^3q_1q_2$, $ \phi_1^3q_1^2$, $ M_1M_3$, $ M_1\phi_1^4$, $ M_3M_4$, $ M_4\phi_1^4$, $ M_2M_3$, $ M_2\phi_1^4$, $ M_3q_1q_2$, $ \phi_1^4q_1q_2$, $ X_1$, $ M_1^2$, $ M_1M_4$, $ M_1M_2$, $ M_4^2$, $ M_2M_4$, $ M_2^2$, $ M_1q_1q_2$, $ M_4q_1q_2$, $ M_2q_1q_2$, $ q_1^2q_2^2$ . -4 2*t^2.06 + 3*t^2.57 + t^2.91 + 3*t^4.12 + 3*t^4.46 + 6*t^4.63 + 3*t^4.97 + 6*t^5.15 + 3*t^5.49 + t^5.82 - 4*t^6. + 4*t^6.18 + 3*t^6.51 + 9*t^6.69 + 11*t^7.03 + 12*t^7.21 + 3*t^7.37 + 6*t^7.54 + 10*t^7.72 + 2*t^7.88 - t^8.06 + 5*t^8.24 - 12*t^8.57 + t^8.73 + 12*t^8.75 + t^8.06/y^2 - (2*t^8.57)/y^2 - t^3.51/y - t^4.54/y - (2*t^5.57)/y - (3*t^6.09)/y - t^6.43/y - (2*t^6.6)/y - (2*t^7.12)/y + (3*t^7.63)/y + (2*t^7.97)/y - (3*t^8.15)/y + (2*t^8.49)/y - (9*t^8.66)/y - t^3.51*y - t^4.54*y - 2*t^5.57*y - 3*t^6.09*y - t^6.43*y - 2*t^6.6*y - 2*t^7.12*y + 3*t^7.63*y + 2*t^7.97*y - 3*t^8.15*y + 2*t^8.49*y - 9*t^8.66*y + t^8.06*y^2 - 2*t^8.57*y^2 (2*t^2.06)/g2^4 + (g1^2*t^2.57)/g2^11 + t^2.57/g2^5 + (g2*t^2.57)/g1^2 + g2^6*t^2.91 + (3*t^4.12)/g2^8 + (g1^2*t^4.46)/g2^3 + g2^3*t^4.46 + (g2^9*t^4.46)/g1^2 + (2*g1^2*t^4.63)/g2^15 + (2*t^4.63)/g2^9 + (2*t^4.63)/(g1^2*g2^3) + 3*g2^2*t^4.97 + (g1^4*t^5.15)/g2^22 + (g1^2*t^5.15)/g2^16 + (2*t^5.15)/g2^10 + t^5.15/(g1^2*g2^4) + (g2^2*t^5.15)/g1^4 + (g1^2*t^5.49)/g2^5 + g2*t^5.49 + (g2^7*t^5.49)/g1^2 + g2^12*t^5.82 - 2*t^6. - (g1^2*t^6.)/g2^6 - (g2^6*t^6.)/g1^2 + (4*t^6.18)/g2^12 + (g1^2*t^6.51)/g2^7 + t^6.51/g2 + (g2^5*t^6.51)/g1^2 + (3*g1^2*t^6.69)/g2^19 + (3*t^6.69)/g2^13 + (3*t^6.69)/(g1^2*g2^7) + (g1^4*t^7.03)/g2^14 + (g1^2*t^7.03)/g2^8 + (7*t^7.03)/g2^2 + (g2^4*t^7.03)/g1^2 + (g2^10*t^7.03)/g1^4 + (2*g1^4*t^7.21)/g2^26 + (2*g1^2*t^7.21)/g2^20 + (4*t^7.21)/g2^14 + (2*t^7.21)/(g1^2*g2^8) + (2*t^7.21)/(g1^4*g2^2) + g1^2*g2^3*t^7.37 + g2^9*t^7.37 + (g2^15*t^7.37)/g1^2 + (2*g1^2*t^7.54)/g2^9 + (2*t^7.54)/g2^3 + (2*g2^3*t^7.54)/g1^2 + (g1^6*t^7.72)/g2^33 + (g1^4*t^7.72)/g2^27 + (2*g1^2*t^7.72)/g2^21 + (2*t^7.72)/g2^15 + (2*t^7.72)/(g1^2*g2^9) + t^7.72/(g1^4*g2^3) + (g2^3*t^7.72)/g1^6 + 2*g2^8*t^7.88 + (g1^4*t^8.06)/g2^16 - (g1^2*t^8.06)/g2^10 - t^8.06/g2^4 - (g2^2*t^8.06)/g1^2 + (g2^8*t^8.06)/g1^4 + (5*t^8.24)/g2^16 - (g1^4*t^8.57)/g2^17 - (2*g1^2*t^8.57)/g2^11 - (6*t^8.57)/g2^5 - (2*g2*t^8.57)/g1^2 - (g2^7*t^8.57)/g1^4 + g2^18*t^8.73 + (4*g1^2*t^8.75)/g2^23 + (4*t^8.75)/g2^17 + (4*t^8.75)/(g1^2*g2^11) + (g1^4*t^8.91)/g2^6 - 2*g2^6*t^8.91 + (g2^18*t^8.91)/g1^4 + t^8.06/(g2^4*y^2) - (2*t^8.57)/(g2^5*y^2) - t^3.51/(g2*y) - t^4.54/(g2^3*y) - (2*t^5.57)/(g2^5*y) - t^6.09/(g1^2*y) - (g1^2*t^6.09)/(g2^12*y) - t^6.09/(g2^6*y) - (g2^5*t^6.43)/y - (2*t^6.6)/(g2^7*y) - (g1^2*t^7.12)/(g2^14*y) - t^7.12/(g1^2*g2^2*y) + (2*g1^2*t^7.63)/(g2^15*y) - t^7.63/(g2^9*y) + (2*t^7.63)/(g1^2*g2^3*y) + (2*g2^2*t^7.97)/y - (g1^2*t^8.15)/(g2^16*y) - t^8.15/(g2^10*y) - t^8.15/(g1^2*g2^4*y) + (g1^2*t^8.49)/(g2^5*y) + (g2^7*t^8.49)/(g1^2*y) - (g1^4*t^8.66)/(g2^23*y) - (g1^2*t^8.66)/(g2^17*y) - (5*t^8.66)/(g2^11*y) - t^8.66/(g1^2*g2^5*y) - (g2*t^8.66)/(g1^4*y) - (t^3.51*y)/g2 - (t^4.54*y)/g2^3 - (2*t^5.57*y)/g2^5 - (t^6.09*y)/g1^2 - (g1^2*t^6.09*y)/g2^12 - (t^6.09*y)/g2^6 - g2^5*t^6.43*y - (2*t^6.6*y)/g2^7 - (g1^2*t^7.12*y)/g2^14 - (t^7.12*y)/(g1^2*g2^2) + (2*g1^2*t^7.63*y)/g2^15 - (t^7.63*y)/g2^9 + (2*t^7.63*y)/(g1^2*g2^3) + 2*g2^2*t^7.97*y - (g1^2*t^8.15*y)/g2^16 - (t^8.15*y)/g2^10 - (t^8.15*y)/(g1^2*g2^4) + (g1^2*t^8.49*y)/g2^5 + (g2^7*t^8.49*y)/g1^2 - (g1^4*t^8.66*y)/g2^23 - (g1^2*t^8.66*y)/g2^17 - (5*t^8.66*y)/g2^11 - (t^8.66*y)/(g1^2*g2^5) - (g2*t^8.66*y)/g1^4 + (t^8.06*y^2)/g2^4 - (2*t^8.57*y^2)/g2^5


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
8483 Sp2adj1nf1 $\phi_1^2X_1$ + $ M_1\phi_1q_1^2$ + $ M_2\phi_1q_2^2$ + $ M_3\phi_1^2q_1q_2$ 1.1965 1.3435 0.8906 [X:[1.6484], M:[0.8789, 0.8789, 0.7031], q:[0.4727, 0.4727], qb:[], phi:[0.1758]] 2*t^2.11 + 2*t^2.64 + t^2.84 + t^3.36 + 3*t^4.22 + 3*t^4.42 + 4*t^4.75 + 3*t^4.95 + 3*t^5.27 + 4*t^5.47 + t^5.67 - 2*t^6. - t^3.53/y - t^4.58/y - (2*t^5.64)/y - t^3.53*y - t^4.58*y - 2*t^5.64*y detail