Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
8543 Sp2adj1nf1 $\phi_1^2X_1$ + $ \phi_1^5q_1^2$ + $ M_1\phi_1^3q_2^2$ + $ M_2\phi_1q_1q_2$ + $ M_1M_2$ + $ q_1q_2X_2$ + $ \phi_1q_2^2X_3$ 1.0131 1.1312 0.8956 [X:[1.5556, 1.3333, 1.3333], M:[0.8889, 1.1111], q:[0.4444, 0.2222], qb:[], phi:[0.2222]] [X:[[0], [0], [0]], M:[[0], [0]], q:[[0], [0]], qb:[], phi:[[0]]] 0 {a: 1313/1296, c: 733/648, X1: 14/9, X2: 4/3, X3: 4/3, M1: 8/9, M2: 10/9, q1: 4/9, q2: 2/9, phi1: 2/9}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \phi_1^4$, $ M_2$, $ \phi_1q_1^2$, $ \phi_1^2q_1q_2$, $ \phi_1^3q_1q_2$, $ X_2$, $ X_3$, $ \phi_1^3q_1^2$, $ X_1$, $ M_1^2$, $ M_1\phi_1^4$, $ \phi_1^8$ $M_2\phi_1^4$, $ M_1\phi_1q_1^2$, $ M_1\phi_1^2q_1q_2$ 3 2*t^2.67 + 3*t^3.33 + 3*t^4. + 2*t^4.67 + 2*t^5.33 + 3*t^6. + 7*t^6.67 + 9*t^7.33 + 8*t^8. + 5*t^8.67 + t^8.67/y^2 - t^3.67/y - t^5./y - (2*t^6.33)/y - t^7./y - (4*t^7.67)/y - t^3.67*y - t^5.*y - 2*t^6.33*y - t^7.*y - 4*t^7.67*y + t^8.67*y^2 2*t^2.67 + 3*t^3.33 + 3*t^4. + 2*t^4.67 + 2*t^5.33 + 3*t^6. + 7*t^6.67 + 9*t^7.33 + 8*t^8. + 5*t^8.67 + t^8.67/y^2 - t^3.67/y - t^5./y - (2*t^6.33)/y - t^7./y - (4*t^7.67)/y - t^3.67*y - t^5.*y - 2*t^6.33*y - t^7.*y - 4*t^7.67*y + t^8.67*y^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
8741 $\phi_1^2X_1$ + $ \phi_1^5q_1^2$ + $ M_1\phi_1^3q_2^2$ + $ M_2\phi_1q_1q_2$ + $ M_1M_2$ + $ q_1q_2X_2$ + $ \phi_1q_2^2X_3$ + $ M_2M_3$ 1.0231 1.1481 0.8911 [X:[1.5556, 1.3333, 1.3333], M:[0.8889, 1.1111, 0.8889], q:[0.4444, 0.2222], qb:[], phi:[0.2222]] 3*t^2.67 + 2*t^3.33 + 3*t^4. + 2*t^4.67 + 5*t^5.33 + 3*t^6. - t^3.67/y - t^5./y - t^3.67*y - t^5.*y detail {a: 221/216, c: 31/27, X1: 14/9, X2: 4/3, X3: 4/3, M1: 8/9, M2: 10/9, M3: 8/9, q1: 4/9, q2: 2/9, phi1: 2/9}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
8398 Sp2adj1nf1 $\phi_1^2X_1$ + $ \phi_1^5q_1^2$ + $ M_1\phi_1^3q_2^2$ + $ M_2\phi_1q_1q_2$ 1.1582 1.2973 0.8928 [X:[1.6498], M:[0.7004, 0.8755], q:[0.5623, 0.3872], qb:[], phi:[0.1751]] 2*t^2.1 + t^2.63 + 2*t^2.85 + 2*t^3.9 + 3*t^4.2 + t^4.42 + 2*t^4.73 + 6*t^4.95 + t^5.25 + t^5.47 + 3*t^5.7 + t^6. - t^3.53/y - t^4.58/y - (2*t^5.63)/y - t^3.53*y - t^4.58*y - 2*t^5.63*y detail