Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
8491 Sp2adj1nf1 $\phi_1^2X_1$ + $ M_1\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ \phi_1^4X_2$ + $ M_2\phi_1^3q_1^2$ 0.7976 0.8095 0.9853 [X:[1.8095, 1.619], M:[0.9524, 0.7619], q:[0.4762, 0.9524], qb:[], phi:[0.0952]] [X:[[4], [8]], M:[[-20], [-16]], q:[[11], [1]], qb:[], phi:[[-2]]] 1 {a: 67/84, c: 17/21, X1: 38/21, X2: 34/21, M1: 20/21, M2: 16/21, q1: 10/21, q2: 20/21, phi1: 2/21}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ q_1q_2$, $ M_2^2$, $ X_2$, $ M_1M_2$, $ M_1^2$ . -1 t^2.29+t^2.86+t^4.29+t^4.57+t^4.86+t^5.14+t^5.71-t^6.+t^6.57+t^6.86+3*t^7.14+t^7.43+t^7.71+2*t^8.-t^8.29+t^7.14/y^2-t^8.57/y^2-t^3.29/y-t^3.86/y-t^5.57/y-(2*t^6.14)/y-t^6.71/y+t^7./y-t^7.86/y-(2*t^8.43)/y-t^3.29*y-t^3.86*y-t^5.57*y-2*t^6.14*y-t^6.71*y+t^7.*y-t^7.86*y-2*t^8.43*y+t^7.14*y^2-t^8.57*y^2 t^2.29/g1^16+t^2.86/g1^20+g1^12*t^4.29+t^4.57/g1^32+g1^8*t^4.86+t^5.14/g1^36+t^5.71/g1^40-t^6.+t^6.57/g1^4+t^6.86/g1^48+(3*t^7.14)/g1^8+t^7.43/g1^52+t^7.71/g1^12+t^8./g1^56+t^8./g1^14-t^8.29/g1^16+t^8.57/g1^60-t^8.57/g1^18+t^7.14/(g1^8*y^2)-t^8.57/(g1^18*y^2)-t^3.29/(g1^2*y)-t^3.86/(g1^6*y)-t^5.57/(g1^18*y)-(2*t^6.14)/(g1^22*y)-t^6.71/(g1^26*y)+(g1^14*t^7.)/y-t^7.86/(g1^34*y)+t^8.14/(g1^36*y)-(g1^6*t^8.14)/y-(2*t^8.43)/(g1^38*y)-(t^3.29*y)/g1^2-(t^3.86*y)/g1^6-(t^5.57*y)/g1^18-(2*t^6.14*y)/g1^22-(t^6.71*y)/g1^26+g1^14*t^7.*y-(t^7.86*y)/g1^34+(t^8.14*y)/g1^36-g1^6*t^8.14*y-(2*t^8.43*y)/g1^38+(t^7.14*y^2)/g1^8-(t^8.57*y^2)/g1^18


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
8670 $\phi_1^2X_1$ + $ M_1\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ \phi_1^4X_2$ + $ M_2\phi_1^3q_1^2$ + $ M_1M_2$ 0.7816 0.7955 0.9825 [X:[1.7778, 1.5556], M:[1.1111, 0.8889], q:[0.3889, 0.9444], qb:[], phi:[0.1111]] t^2.67+t^3.33+t^4.+t^4.67+t^5.33-t^3.33/y-t^4./y-t^6./y-t^3.33*y-t^4.*y-t^6.*y detail {a: 1013/1296, c: 1031/1296, X1: 16/9, X2: 14/9, M1: 10/9, M2: 8/9, q1: 7/18, q2: 17/18, phi1: 1/9}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
8226 Sp2adj1nf1 $\phi_1^2X_1$ + $ M_1\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ \phi_1^4X_2$ 0.7797 0.7789 1.0011 [X:[1.8027, 1.6054], M:[0.9866], q:[0.4574, 0.9507], qb:[], phi:[0.0987]] t^2.96+t^3.63+t^4.22+t^4.82+t^5.92-t^6.-t^3.3/y-t^3.89/y-t^3.3*y-t^3.89*y detail