Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
8482 Sp2adj1nf1 $\phi_1^2X_1$ + $ M_1\phi_1q_1^2$ + $ M_2\phi_1q_2^2$ + $ M_3\phi_1q_1q_2$ 1.1875 1.3233 0.8974 [X:[1.6558], M:[0.8605, 0.8605, 0.8605], q:[0.4837, 0.4837], qb:[], phi:[0.1721]] [X:[[0, 2]], M:[[2, -11], [-2, 1], [0, -5]], q:[[-1, 6], [1, 0]], qb:[], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1^4$, $ M_1$, $ M_3$, $ M_2$, $ q_1q_2$, $ \phi_1^2q_1q_2$, $ \phi_1^8$, $ \phi_1^3q_2^2$, $ \phi_1^3q_1q_2$, $ \phi_1^3q_1^2$, $ M_1\phi_1^4$, $ M_3\phi_1^4$, $ M_2\phi_1^4$, $ \phi_1^4q_1q_2$, $ X_1$, $ M_1^2$, $ M_1M_3$, $ M_1M_2$, $ M_3^2$, $ M_2M_3$, $ M_2^2$, $ M_1q_1q_2$, $ M_3q_1q_2$, $ M_2q_1q_2$, $ q_1^2q_2^2$ $\phi_1^6q_1q_2$ -3 t^2.07 + 3*t^2.58 + t^2.9 + t^3.93 + t^4.13 + 3*t^4.45 + 3*t^4.65 + 2*t^4.97 + 6*t^5.16 + 3*t^5.48 + t^5.8 - 3*t^6. + t^6.2 + 3*t^6.52 + 3*t^6.71 + t^6.84 + 8*t^7.03 + 6*t^7.23 + 3*t^7.35 + 3*t^7.55 + 10*t^7.74 + 2*t^7.87 + 4*t^8.07 + t^8.26 + 3*t^8.39 - 10*t^8.58 + t^8.71 + 3*t^8.78 + 2*t^8.9 + t^8.07/y^2 - t^8.58/y^2 - t^3.52/y - t^4.55/y - t^5.58/y - (3*t^6.1)/y - t^6.42/y - t^6.61/y - (3*t^7.13)/y - t^7.45/y + (2*t^7.65)/y + t^7.97/y + (2*t^8.48)/y - (7*t^8.68)/y - t^3.52*y - t^4.55*y - t^5.58*y - 3*t^6.1*y - t^6.42*y - t^6.61*y - 3*t^7.13*y - t^7.45*y + 2*t^7.65*y + t^7.97*y + 2*t^8.48*y - 7*t^8.68*y + t^8.07*y^2 - t^8.58*y^2 t^2.07/g2^4 + (g1^2*t^2.58)/g2^11 + t^2.58/g2^5 + (g2*t^2.58)/g1^2 + g2^6*t^2.9 + g2^4*t^3.93 + t^4.13/g2^8 + (g1^2*t^4.45)/g2^3 + g2^3*t^4.45 + (g2^9*t^4.45)/g1^2 + (g1^2*t^4.65)/g2^15 + t^4.65/g2^9 + t^4.65/(g1^2*g2^3) + 2*g2^2*t^4.97 + (g1^4*t^5.16)/g2^22 + (g1^2*t^5.16)/g2^16 + (2*t^5.16)/g2^10 + t^5.16/(g1^2*g2^4) + (g2^2*t^5.16)/g1^4 + (g1^2*t^5.48)/g2^5 + g2*t^5.48 + (g2^7*t^5.48)/g1^2 + g2^12*t^5.8 - t^6. - (g1^2*t^6.)/g2^6 - (g2^6*t^6.)/g1^2 + t^6.2/g2^12 + (g1^2*t^6.52)/g2^7 + t^6.52/g2 + (g2^5*t^6.52)/g1^2 + (g1^2*t^6.71)/g2^19 + t^6.71/g2^13 + t^6.71/(g1^2*g2^7) + g2^10*t^6.84 + (g1^4*t^7.03)/g2^14 + (g1^2*t^7.03)/g2^8 + (4*t^7.03)/g2^2 + (g2^4*t^7.03)/g1^2 + (g2^10*t^7.03)/g1^4 + (g1^4*t^7.23)/g2^26 + (g1^2*t^7.23)/g2^20 + (2*t^7.23)/g2^14 + t^7.23/(g1^2*g2^8) + t^7.23/(g1^4*g2^2) + g1^2*g2^3*t^7.35 + g2^9*t^7.35 + (g2^15*t^7.35)/g1^2 + (g1^2*t^7.55)/g2^9 + t^7.55/g2^3 + (g2^3*t^7.55)/g1^2 + (g1^6*t^7.74)/g2^33 + (g1^4*t^7.74)/g2^27 + (2*g1^2*t^7.74)/g2^21 + (2*t^7.74)/g2^15 + (2*t^7.74)/(g1^2*g2^9) + t^7.74/(g1^4*g2^3) + (g2^3*t^7.74)/g1^6 + 2*g2^8*t^7.87 + (g1^4*t^8.07)/g2^16 + (2*t^8.07)/g2^4 + (g2^8*t^8.07)/g1^4 + t^8.26/g2^16 + g1^2*g2*t^8.39 + g2^7*t^8.39 + (g2^13*t^8.39)/g1^2 - (g1^4*t^8.58)/g2^17 - (2*g1^2*t^8.58)/g2^11 - (4*t^8.58)/g2^5 - (2*g2*t^8.58)/g1^2 - (g2^7*t^8.58)/g1^4 + g2^18*t^8.71 + (g1^2*t^8.78)/g2^23 + t^8.78/g2^17 + t^8.78/(g1^2*g2^11) + (g1^4*t^8.9)/g2^6 + (g2^18*t^8.9)/g1^4 + t^8.07/(g2^4*y^2) - t^8.58/(g2^5*y^2) - t^3.52/(g2*y) - t^4.55/(g2^3*y) - t^5.58/(g2^5*y) - t^6.1/(g1^2*y) - (g1^2*t^6.1)/(g2^12*y) - t^6.1/(g2^6*y) - (g2^5*t^6.42)/y - t^6.61/(g2^7*y) - (g1^2*t^7.13)/(g2^14*y) - t^7.13/(g2^8*y) - t^7.13/(g1^2*g2^2*y) - (g2^3*t^7.45)/y + (g1^2*t^7.65)/(g2^15*y) + t^7.65/(g1^2*g2^3*y) + (g2^2*t^7.97)/y + (g1^2*t^8.48)/(g2^5*y) + (g2^7*t^8.48)/(g1^2*y) - (g1^4*t^8.68)/(g2^23*y) - (g1^2*t^8.68)/(g2^17*y) - (3*t^8.68)/(g2^11*y) - t^8.68/(g1^2*g2^5*y) - (g2*t^8.68)/(g1^4*y) - (t^3.52*y)/g2 - (t^4.55*y)/g2^3 - (t^5.58*y)/g2^5 - (t^6.1*y)/g1^2 - (g1^2*t^6.1*y)/g2^12 - (t^6.1*y)/g2^6 - g2^5*t^6.42*y - (t^6.61*y)/g2^7 - (g1^2*t^7.13*y)/g2^14 - (t^7.13*y)/g2^8 - (t^7.13*y)/(g1^2*g2^2) - g2^3*t^7.45*y + (g1^2*t^7.65*y)/g2^15 + (t^7.65*y)/(g1^2*g2^3) + g2^2*t^7.97*y + (g1^2*t^8.48*y)/g2^5 + (g2^7*t^8.48*y)/g1^2 - (g1^4*t^8.68*y)/g2^23 - (g1^2*t^8.68*y)/g2^17 - (3*t^8.68*y)/g2^11 - (t^8.68*y)/(g1^2*g2^5) - (g2*t^8.68*y)/g1^4 + (t^8.07*y^2)/g2^4 - (t^8.58*y^2)/g2^5


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
8225 Sp2adj1nf1 $\phi_1^2X_1$ + $ M_1\phi_1q_1^2$ + $ M_2\phi_1q_2^2$ 1.1761 1.3049 0.9013 [X:[1.6466], M:[0.8835, 0.8835], q:[0.4699, 0.4699], qb:[], phi:[0.1767]] t^2.12 + 2*t^2.65 + t^2.82 + t^3.35 + t^3.88 + t^4.24 + 3*t^4.41 + 2*t^4.77 + 2*t^4.94 + 3*t^5.3 + 3*t^5.47 + t^5.64 - t^6. - t^3.53/y - t^4.59/y - t^5.65/y - t^3.53*y - t^4.59*y - t^5.65*y detail