Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
8407 | Sp2adj1nf1 | $\phi_1^2X_1$ + $ \phi_1q_1^2q_2^2$ + $ M_1\phi_1^2q_1q_2$ + $ \phi_1^3q_1^2$ + $ \phi_1q_2^2X_2$ | 0.8882 | 0.9961 | 0.8916 | [X:[1.6364, 1.4545], M:[0.7273], q:[0.7273, 0.1818], qb:[], phi:[0.1818]] | [X:[[0], [0]], M:[[0]], q:[[0], [0]], qb:[], phi:[[0]]] | 0 | {a: 18915/21296, c: 10607/10648, X1: 18/11, X2: 16/11, M1: 8/11, q1: 8/11, q2: 2/11, phi1: 2/11} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ \phi_1^4$, $ q_1q_2$, $ \phi_1^3q_2^2$, $ \phi_1q_1q_2$, $ M_1^2$, $ M_1\phi_1^4$, $ \phi_1^8$, $ \phi_1^3q_1q_2$, $ X_2$, $ \phi_1q_1^2$, $ M_1q_1q_2$, $ \phi_1^4q_1q_2$, $ M_1\phi_1^3q_2^2$, $ \phi_1^7q_2^2$, $ X_1$, $ M_1\phi_1q_1q_2$, $ \phi_1^5q_1q_2$, $ q_1^2q_2^2$, $ \phi_1^6q_2^4$ | . | 0 | 2*t^2.18 + 2*t^2.73 + t^3.27 + 4*t^4.36 + 5*t^4.91 + 4*t^5.45 + 5*t^6.55 + 9*t^7.09 + 7*t^7.64 + 2*t^8.18 + t^8.18/y^2 - (2*t^8.73)/y^2 - t^3.55/y - t^4.64/y - (2*t^5.73)/y - t^6.27/y - (3*t^6.82)/y + t^7.36/y + (2*t^8.45)/y - t^3.55*y - t^4.64*y - 2*t^5.73*y - t^6.27*y - 3*t^6.82*y + t^7.36*y + 2*t^8.45*y + t^8.18*y^2 - 2*t^8.73*y^2 | 2*t^2.18 + 2*t^2.73 + t^3.27 + 4*t^4.36 + 5*t^4.91 + 4*t^5.45 + 5*t^6.55 + 9*t^7.09 + 7*t^7.64 + 2*t^8.18 + t^8.18/y^2 - (2*t^8.73)/y^2 - t^3.55/y - t^4.64/y - (2*t^5.73)/y - t^6.27/y - (3*t^6.82)/y + t^7.36/y + (2*t^8.45)/y - t^3.55*y - t^4.64*y - 2*t^5.73*y - t^6.27*y - 3*t^6.82*y + t^7.36*y + 2*t^8.45*y + t^8.18*y^2 - 2*t^8.73*y^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
8554 | $\phi_1^2X_1$ + $ \phi_1q_1^2q_2^2$ + $ M_1\phi_1^2q_1q_2$ + $ \phi_1^3q_1^2$ + $ \phi_1q_2^2X_2$ + $ M_2q_1q_2$ | 0.8799 | 0.9822 | 0.8959 | [X:[1.6364, 1.4545], M:[0.7273, 1.0909], q:[0.7273, 0.1818], qb:[], phi:[0.1818]] | 2*t^2.18 + t^2.73 + 2*t^3.27 + 4*t^4.36 + 3*t^4.91 + 4*t^5.45 - t^3.55/y - t^4.64/y - (2*t^5.73)/y - t^3.55*y - t^4.64*y - 2*t^5.73*y | detail | {a: 9369/10648, c: 5229/5324, X1: 18/11, X2: 16/11, M1: 8/11, M2: 12/11, q1: 8/11, q2: 2/11, phi1: 2/11} |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
8210 | Sp2adj1nf1 | $\phi_1^2X_1$ + $ \phi_1q_1^2q_2^2$ + $ M_1\phi_1^2q_1q_2$ | 1.1782 | 1.3146 | 0.8963 | [X:[1.6364], M:[0.7273], q:[0.4545, 0.4545], qb:[], phi:[0.1818]] | 2*t^2.18 + t^2.73 + 3*t^3.27 + 6*t^4.36 + 3*t^4.91 + 7*t^5.45 - t^6. - t^3.55/y - t^4.64/y - (2*t^5.73)/y - t^3.55*y - t^4.64*y - 2*t^5.73*y | detail | {a: 6273/5324, c: 6999/5324, X1: 18/11, M1: 8/11, q1: 5/11, q2: 5/11, phi1: 2/11} |