Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
839 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_1M_7$ + $ M_3M_6$ 0.7051 0.8546 0.8251 [X:[], M:[0.855, 1.0725, 1.0, 0.9226, 0.9324, 1.0, 1.145], q:[0.6112, 0.5338], qb:[0.4662, 0.5338], phi:[0.4638]] [X:[], M:[[-4, 8, 1], [2, -2, 0], [0, -4, -1], [-4, -4, 0], [0, 8, 0], [0, 4, 1], [4, -8, -1]], q:[[4, 0, 0], [0, -8, -1]], qb:[[0, 4, 0], [0, 0, 1]], phi:[[-1, 1, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ M_5$, $ M_3$, $ M_6$, $ M_2$, $ M_7$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ M_4^2$, $ M_5^2$, $ M_2M_4$ $M_3^2$, $ M_6^2$ -3 t^2.77 + t^2.8 + 2*t^3. + t^3.22 + 2*t^3.43 + t^4.19 + 2*t^4.39 + 3*t^4.59 + t^4.62 + 2*t^4.83 + t^5.06 + t^5.54 + t^5.59 + t^5.99 - 3*t^6. + t^6.01 + 2*t^6.22 + 3*t^6.43 + 2*t^6.65 + 3*t^6.87 + t^6.99 + 2*t^7.19 + 3*t^7.36 + 2*t^7.39 + t^7.42 + 4*t^7.59 + 2*t^7.62 + 3*t^7.83 + t^7.86 + 4*t^8.03 + 2*t^8.06 + 3*t^8.26 + t^8.3 + t^8.33 + t^8.38 + t^8.39 + 2*t^8.49 - 2*t^8.57 + 2*t^8.58 + t^8.75 - 5*t^8.77 + 3*t^8.78 - 4*t^8.8 + 2*t^8.81 + 4*t^8.99 - t^4.39/y - t^7.16/y - t^7.19/y + t^7.59/y + t^7.62/y + t^8.57/y + (2*t^8.77)/y + (2*t^8.8)/y + t^8.99/y - t^4.39*y - t^7.16*y - t^7.19*y + t^7.59*y + t^7.62*y + t^8.57*y + 2*t^8.77*y + 2*t^8.8*y + t^8.99*y t^2.77/(g1^4*g2^4) + g2^8*t^2.8 + t^3./(g2^4*g3) + g2^4*g3*t^3. + (g1^2*t^3.22)/g2^2 + (g1^4*t^3.43)/(g2^8*g3) + g1^4*g3*t^3.43 + (g2^9*t^4.19)/g1 + t^4.39/(g1*g2^3*g3) + (g2^5*g3*t^4.39)/g1 + t^4.59/(g1*g2^7) + t^4.59/(g1*g2^15*g3^2) + (g2*g3^2*t^4.59)/g1 + g1^3*g2^5*t^4.62 + (g1^3*t^4.83)/(g2^7*g3) + g1^3*g2*g3*t^4.83 + g1^7*g2*t^5.06 + t^5.54/(g1^8*g2^8) + g2^16*t^5.59 + t^5.99/(g1^2*g2^6) - 3*t^6. + g1^2*g2^6*t^6.01 + (g1^2*t^6.22)/(g2^6*g3) + g1^2*g2^2*g3*t^6.22 + (g1^4*t^6.43)/g2^4 + (g1^4*t^6.43)/(g2^12*g3^2) + g1^4*g2^4*g3^2*t^6.43 + (g1^6*t^6.65)/(g2^10*g3) + (g1^6*g3*t^6.65)/g2^2 + (g1^8*t^6.87)/g2^8 + (g1^8*t^6.87)/(g2^16*g3^2) + g1^8*g3^2*t^6.87 + (g2^17*t^6.99)/g1 + (g2^5*t^7.19)/(g1*g3) + (g2^13*g3*t^7.19)/g1 + t^7.36/(g1^5*g2^11) + t^7.36/(g1^5*g2^19*g3^2) + (g3^2*t^7.36)/(g1^5*g2^3) + t^7.39/(g1*g2^7*g3^2) + (g2^9*g3^2*t^7.39)/g1 + g1^3*g2^13*t^7.42 + t^7.59/(g1*g2^19*g3^3) + t^7.59/(g1*g2^11*g3) + (g3*t^7.59)/(g1*g2^3) + (g2^5*g3^3*t^7.59)/g1 + (g1^3*g2*t^7.62)/g3 + g1^3*g2^9*g3*t^7.62 + (g1^3*t^7.83)/g2^3 + (g1^3*t^7.83)/(g2^11*g3^2) + g1^3*g2^5*g3^2*t^7.83 + g1^7*g2^9*t^7.86 + (g1^3*t^8.03)/(g2^23*g3^3) + (g1^3*t^8.03)/(g2^15*g3) + (g1^3*g3*t^8.03)/g2^7 + g1^3*g2*g3^3*t^8.03 + (g1^7*t^8.06)/(g2^3*g3) + g1^7*g2^5*g3*t^8.06 + (g1^7*t^8.26)/g2^7 + (g1^7*t^8.26)/(g2^15*g3^2) + g1^7*g2*g3^2*t^8.26 + t^8.3/(g1^12*g2^12) + t^8.33/g1^8 + (g2^18*t^8.38)/g1^2 + g2^24*t^8.39 + (g1^11*t^8.49)/(g2^7*g3) + g1^11*g2*g3*t^8.49 - t^8.57/(g1^4*g3) - (g2^8*g3*t^8.57)/g1^4 + (g2^6*t^8.58)/(g1^2*g3) + (g2^14*g3*t^8.58)/g1^2 + t^8.75/(g1^6*g2^10) - (3*t^8.77)/(g1^4*g2^4) - t^8.77/(g1^4*g2^12*g3^2) - (g2^4*g3^2*t^8.77)/g1^4 + (g2^2*t^8.78)/g1^2 + t^8.78/(g1^2*g2^6*g3^2) + (g2^10*g3^2*t^8.78)/g1^2 - 4*g2^8*t^8.8 + 2*g1^2*g2^14*t^8.81 + t^8.99/(g1^2*g2^18*g3^3) + t^8.99/(g1^2*g2^10*g3) + (g3*t^8.99)/(g1^2*g2^2) + (g2^6*g3^3*t^8.99)/g1^2 - (g2*t^4.39)/(g1*y) - t^7.16/(g1^5*g2^3*y) - (g2^9*t^7.19)/(g1*y) + t^7.59/(g1*g2^7*y) + (g1^3*g2^5*t^7.62)/y + (g2^4*t^8.57)/(g1^4*y) + t^8.77/(g1^4*g2^8*g3*y) + (g3*t^8.77)/(g1^4*y) + (g2^4*t^8.8)/(g3*y) + (g2^12*g3*t^8.8)/y + t^8.99/(g1^2*g2^6*y) - (g2*t^4.39*y)/g1 - (t^7.16*y)/(g1^5*g2^3) - (g2^9*t^7.19*y)/g1 + (t^7.59*y)/(g1*g2^7) + g1^3*g2^5*t^7.62*y + (g2^4*t^8.57*y)/g1^4 + (t^8.77*y)/(g1^4*g2^8*g3) + (g3*t^8.77*y)/g1^4 + (g2^4*t^8.8*y)/g3 + g2^12*g3*t^8.8*y + (t^8.99*y)/(g1^2*g2^6)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
536 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_1M_7$ 0.7566 0.9235 0.8193 [X:[], M:[0.8325, 1.2021, 0.7634, 0.797, 0.7989, 0.7634, 1.1675], q:[0.5669, 0.6005], qb:[0.6361, 0.6005], phi:[0.399]] 2*t^2.29 + t^2.39 + t^2.4 + 2*t^3.5 + t^3.61 + 3*t^4.58 + t^4.6 + 2*t^4.68 + 2*t^4.69 + 2*t^4.7 + t^4.78 + 2*t^4.79 + 3*t^4.8 + t^4.81 + 2*t^4.91 + t^5.01 + 3*t^5.79 + 2*t^5.9 - 4*t^6. - t^4.2/y - t^4.2*y detail