Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
838 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_7q_1\tilde{q}_2$ 0.737 0.9112 0.8089 [X:[], M:[0.8973, 1.1144, 0.8739, 1.0, 0.7712, 1.0, 0.7712], q:[0.5513, 0.5513], qb:[0.4487, 0.6775], phi:[0.4428]] [X:[], M:[[0, 8, 0], [0, -2, 2], [0, -4, -4], [1, 4, 0], [-1, 0, -4], [-1, -4, 0], [1, 8, -4]], q:[[-1, -8, 0], [1, 0, 0]], qb:[[0, 4, 0], [0, 0, 4]], phi:[[0, 1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_7$, $ M_3$, $ M_1$, $ M_6$, $ M_4$, $ M_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ M_5^2$, $ M_5M_7$, $ M_7^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3M_5$, $ M_3M_7$, $ M_1M_5$, $ M_1M_7$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ M_3^2$, $ M_5M_6$, $ M_1M_3$, $ M_4M_5$, $ M_6M_7$, $ M_4M_7$, $ M_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_2M_5$, $ M_2M_7$, $ M_2M_3$ $M_4^2$, $ M_6^2$ -3 2*t^2.31 + t^2.62 + t^2.69 + 2*t^3. + t^3.34 + t^4.02 + 2*t^4.33 + 3*t^4.63 + 3*t^4.64 + t^4.71 + 2*t^4.94 + 4*t^5.01 + t^5.24 + 4*t^5.31 + t^5.38 + t^5.39 + 2*t^5.66 + t^5.96 - 3*t^6. + t^6.04 - 2*t^6.31 + 2*t^6.33 + 2*t^6.34 - 2*t^6.38 + 4*t^6.64 - t^6.69 + t^6.71 + 4*t^6.94 + 6*t^6.95 + 4*t^7.02 + 3*t^7.25 + 3*t^7.26 + 3*t^7.32 + 6*t^7.33 + t^7.4 + 2*t^7.56 + 6*t^7.63 + 4*t^7.64 + 2*t^7.7 + 2*t^7.71 + t^7.86 + t^7.94 + 3*t^7.97 - t^8.01 + t^8.04 + t^8.08 + t^8.09 + 2*t^8.28 - 8*t^8.31 - 2*t^8.32 + 4*t^8.35 + t^8.59 - 9*t^8.62 + 3*t^8.65 + 7*t^8.66 - 8*t^8.69 - t^8.7 + 2*t^8.73 - 2*t^8.93 + 10*t^8.96 - t^4.33/y - (2*t^6.64)/y - t^6.95/y - t^7.02/y + t^7.63/y + t^7.64/y + t^7.71/y + (2*t^7.94)/y + (4*t^8.01)/y + (5*t^8.31)/y + (2*t^8.62)/y + (2*t^8.66)/y + (2*t^8.69)/y - (2*t^8.96)/y - t^4.33*y - 2*t^6.64*y - t^6.95*y - t^7.02*y + t^7.63*y + t^7.64*y + t^7.71*y + 2*t^7.94*y + 4*t^8.01*y + 5*t^8.31*y + 2*t^8.62*y + 2*t^8.66*y + 2*t^8.69*y - 2*t^8.96*y t^2.31/(g1*g3^4) + (g1*g2^8*t^2.31)/g3^4 + t^2.62/(g2^4*g3^4) + g2^8*t^2.69 + t^3./(g1*g2^4) + g1*g2^4*t^3. + (g3^2*t^3.34)/g2^2 + (g2^9*t^4.02)/g3 + t^4.33/(g1*g2^3*g3) + (g1*g2^5*t^4.33)/g3 + t^4.63/(g1^2*g3^8) + (g2^8*t^4.63)/g3^8 + (g1^2*g2^16*t^4.63)/g3^8 + t^4.64/(g1^2*g2^15*g3) + t^4.64/(g2^7*g3) + (g1^2*g2*t^4.64)/g3 + g2^5*g3^3*t^4.71 + t^4.94/(g1*g2^4*g3^8) + (g1*g2^4*t^4.94)/g3^8 + (g2^8*t^5.01)/(g1*g3^4) + (g1*g2^16*t^5.01)/g3^4 + (g3^3*t^5.01)/(g1*g2^7) + g1*g2*g3^3*t^5.01 + t^5.24/(g2^8*g3^8) + t^5.31/(g1^2*g2^4*g3^4) + (2*g2^4*t^5.31)/g3^4 + (g1^2*g2^12*t^5.31)/g3^4 + g2^16*t^5.38 + g2*g3^7*t^5.39 + t^5.66/(g1*g2^2*g3^2) + (g1*g2^6*t^5.66)/g3^2 + t^5.96/(g2^6*g3^2) - 3*t^6. + g2^6*g3^2*t^6.04 - t^6.31/(g1*g2^12) - (g1*t^6.31)/g2^4 + (g2^9*t^6.33)/(g1*g3^5) + (g1*g2^17*t^6.33)/g3^5 + (g3^2*t^6.34)/(g1*g2^6) + g1*g2^2*g3^2*t^6.34 - (g3^4*t^6.38)/g1 - g1*g2^8*g3^4*t^6.38 + t^6.64/(g1^2*g2^3*g3^5) + (2*g2^5*t^6.64)/g3^5 + (g1^2*g2^13*t^6.64)/g3^5 - (g3^4*t^6.69)/g2^4 + (g2^17*t^6.71)/g3 + t^6.94/(g1^3*g3^12) + (g2^8*t^6.94)/(g1*g3^12) + (g1*g2^16*t^6.94)/g3^12 + (g1^3*g2^24*t^6.94)/g3^12 + t^6.95/(g1^3*g2^15*g3^5) + (2*t^6.95)/(g1*g2^7*g3^5) + (2*g1*g2*t^6.95)/g3^5 + (g1^3*g2^9*t^6.95)/g3^5 + (2*g2^5*t^7.02)/(g1*g3) + (2*g1*g2^13*t^7.02)/g3 + t^7.25/(g1^2*g2^4*g3^12) + (g2^4*t^7.25)/g3^12 + (g1^2*g2^12*t^7.25)/g3^12 + t^7.26/(g1^2*g2^19*g3^5) + t^7.26/(g2^11*g3^5) + (g1^2*t^7.26)/(g2^3*g3^5) + (g2^8*t^7.32)/(g1^2*g3^8) + (g2^16*t^7.32)/g3^8 + (g1^2*g2^24*t^7.32)/g3^8 + (2*t^7.33)/(g1^2*g2^7*g3) + (2*g2*t^7.33)/g3 + (2*g1^2*g2^9*t^7.33)/g3 + g2^13*g3^3*t^7.4 + (g1*t^7.56)/g3^12 + t^7.56/(g1*g2^8*g3^12) + t^7.63/(g1^3*g2^4*g3^8) + (2*g2^4*t^7.63)/(g1*g3^8) + (2*g1*g2^12*t^7.63)/g3^8 + (g1^3*g2^20*t^7.63)/g3^8 + t^7.64/(g1^3*g2^19*g3) + t^7.64/(g1*g2^11*g3) + (g1*t^7.64)/(g2^3*g3) + (g1^3*g2^5*t^7.64)/g3 + (g2^16*t^7.7)/(g1*g3^4) + (g1*g2^24*t^7.7)/g3^4 + (g2*g3^3*t^7.71)/g1 + g1*g2^9*g3^3*t^7.71 + t^7.86/(g2^12*g3^12) + t^7.94/g3^8 + t^7.97/(g1^2*g2^2*g3^6) + (g2^6*t^7.97)/g3^6 + (g1^2*g2^14*t^7.97)/g3^6 - (g3^3*t^8.01)/g2^3 + (g2^18*t^8.04)/g3^2 + g2^24*t^8.08 + g2^9*g3^7*t^8.09 + t^8.28/(g1*g2^6*g3^6) + (g1*g2^2*t^8.28)/g3^6 - (4*t^8.31)/(g1*g3^4) - (4*g1*g2^8*t^8.31)/g3^4 - (g3^3*t^8.32)/(g1*g2^15) - (g1*g3^3*t^8.32)/g2^7 + (2*g2^6*t^8.35)/(g1*g3^2) + (2*g1*g2^14*t^8.35)/g3^2 + t^8.59/(g2^10*g3^6) - (2*t^8.62)/(g1^2*g2^12*g3^4) - (5*t^8.62)/(g2^4*g3^4) - (2*g1^2*g2^4*t^8.62)/g3^4 + (g2^9*t^8.65)/(g1^2*g3^9) + (g2^17*t^8.65)/g3^9 + (g1^2*g2^25*t^8.65)/g3^9 + (2*t^8.66)/(g1^2*g2^6*g3^2) + (3*g2^2*t^8.66)/g3^2 + (2*g1^2*g2^10*t^8.66)/g3^2 - t^8.69/g1^2 - 6*g2^8*t^8.69 - g1^2*g2^16*t^8.69 - (g3^7*t^8.7)/g2^7 + 2*g2^14*g3^2*t^8.73 - t^8.93/(g1*g2^16*g3^4) - (g1*t^8.93)/(g2^8*g3^4) + t^8.96/(g1^3*g2^3*g3^9) + (2*g2^5*t^8.96)/(g1*g3^9) + (2*g1*g2^13*t^8.96)/g3^9 + (g1^3*g2^21*t^8.96)/g3^9 + t^8.96/(g1^3*g2^18*g3^2) + t^8.96/(g1*g2^10*g3^2) + (g1*t^8.96)/(g2^2*g3^2) + (g1^3*g2^6*t^8.96)/g3^2 - (g2*t^4.33)/(g3*y) - (g2*t^6.64)/(g1*g3^5*y) - (g1*g2^9*t^6.64)/(g3^5*y) - t^6.95/(g2^3*g3^5*y) - (g2^9*t^7.02)/(g3*y) + (g2^8*t^7.63)/(g3^8*y) + t^7.64/(g2^7*g3*y) + (g2^5*g3^3*t^7.71)/y + t^7.94/(g1*g2^4*g3^8*y) + (g1*g2^4*t^7.94)/(g3^8*y) + (g2^8*t^8.01)/(g1*g3^4*y) + (g1*g2^16*t^8.01)/(g3^4*y) + (g3^3*t^8.01)/(g1*g2^7*y) + (g1*g2*g3^3*t^8.01)/y + t^8.31/(g1^2*g2^4*g3^4*y) + (3*g2^4*t^8.31)/(g3^4*y) + (g1^2*g2^12*t^8.31)/(g3^4*y) + (g1*t^8.62)/(g3^4*y) + t^8.62/(g1*g2^8*g3^4*y) + t^8.66/(g1*g2^2*g3^2*y) + (g1*g2^6*t^8.66)/(g3^2*y) + (g2^4*t^8.69)/(g1*y) + (g1*g2^12*t^8.69)/y - (g2*t^8.96)/(g1^2*g3^9*y) - (g2^9*t^8.96)/(g3^9*y) - (g1^2*g2^17*t^8.96)/(g3^9*y) + t^8.96/(g2^6*g3^2*y) - (g2*t^4.33*y)/g3 - (g2*t^6.64*y)/(g1*g3^5) - (g1*g2^9*t^6.64*y)/g3^5 - (t^6.95*y)/(g2^3*g3^5) - (g2^9*t^7.02*y)/g3 + (g2^8*t^7.63*y)/g3^8 + (t^7.64*y)/(g2^7*g3) + g2^5*g3^3*t^7.71*y + (t^7.94*y)/(g1*g2^4*g3^8) + (g1*g2^4*t^7.94*y)/g3^8 + (g2^8*t^8.01*y)/(g1*g3^4) + (g1*g2^16*t^8.01*y)/g3^4 + (g3^3*t^8.01*y)/(g1*g2^7) + g1*g2*g3^3*t^8.01*y + (t^8.31*y)/(g1^2*g2^4*g3^4) + (3*g2^4*t^8.31*y)/g3^4 + (g1^2*g2^12*t^8.31*y)/g3^4 + (g1*t^8.62*y)/g3^4 + (t^8.62*y)/(g1*g2^8*g3^4) + (t^8.66*y)/(g1*g2^2*g3^2) + (g1*g2^6*t^8.66*y)/g3^2 + (g2^4*t^8.69*y)/g1 + g1*g2^12*t^8.69*y - (g2*t^8.96*y)/(g1^2*g3^9) - (g2^9*t^8.96*y)/g3^9 - (g1^2*g2^17*t^8.96*y)/g3^9 + (t^8.96*y)/(g2^6*g3^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
535 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ 0.7203 0.8807 0.8179 [X:[], M:[0.9121, 1.0959, 0.896, 1.0183, 0.7898, 0.9817], q:[0.5256, 0.5623], qb:[0.4561, 0.648], phi:[0.452]] t^2.37 + t^2.69 + t^2.74 + t^2.94 + t^3.06 + t^3.29 + t^3.52 + t^4.09 + t^4.3 + t^4.41 + t^4.51 + t^4.62 + t^4.67 + t^4.73 + t^4.74 + t^4.88 + t^4.99 + t^5.06 + t^5.11 + t^5.24 + t^5.31 + t^5.38 + t^5.42 + t^5.47 + t^5.66 + t^5.89 + t^5.98 - 3*t^6. - t^4.36/y - t^4.36*y detail