Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
823 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}^{2}$ 0.706 0.8681 0.8132 [M:[0.9624, 1.0751, 0.8498, 0.9249, 1.0], q:[0.4437, 0.5939], qb:[0.4812, 0.5563], phi:[0.4812]] [M:[[-2], [4], [-8], [-4], [0]], q:[[-3], [5]], qb:[[-1], [3]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{4}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{3}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{4}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ ${}M_{1}\tilde{q}_{1}\tilde{q}_{2}$ 0 t^2.549 + t^2.775 + 2*t^2.887 + t^3. + t^3.113 + t^3.225 + t^4.106 + t^4.218 + t^4.331 + t^4.444 + 2*t^4.556 + t^4.669 + t^4.782 + t^4.894 + t^5.007 + t^5.099 + t^5.324 + 2*t^5.437 + t^5.549 + t^5.662 + 4*t^5.775 + t^5.887 + t^6.113 - t^6.338 + t^6.655 + t^6.768 + 2*t^6.88 + 3*t^6.993 + 4*t^7.106 + 3*t^7.218 + 3*t^7.331 + 4*t^7.444 + 3*t^7.556 + t^7.648 + t^7.669 + 2*t^7.782 + t^7.873 + 2*t^7.894 + 2*t^7.986 + t^8.099 + 2*t^8.211 + t^8.232 + 5*t^8.324 + t^8.437 + t^8.549 + 6*t^8.662 - t^8.775 - 2*t^8.887 - t^4.444/y - t^6.993/y - (2*t^7.331)/y + (2*t^7.556)/y + t^7.894/y + t^8.324/y + (2*t^8.437)/y + t^8.549/y + (3*t^8.662)/y + (3*t^8.775)/y + (3*t^8.887)/y - t^4.444*y - t^6.993*y - 2*t^7.331*y + 2*t^7.556*y + t^7.894*y + t^8.324*y + 2*t^8.437*y + t^8.549*y + 3*t^8.662*y + 3*t^8.775*y + 3*t^8.887*y t^2.549/g1^8 + t^2.775/g1^4 + (2*t^2.887)/g1^2 + t^3. + g1^2*t^3.113 + g1^4*t^3.225 + t^4.106/g1^7 + t^4.218/g1^5 + t^4.331/g1^3 + t^4.444/g1 + 2*g1*t^4.556 + g1^3*t^4.669 + g1^5*t^4.782 + g1^7*t^4.894 + g1^9*t^5.007 + t^5.099/g1^16 + t^5.324/g1^12 + (2*t^5.437)/g1^10 + t^5.549/g1^8 + t^5.662/g1^6 + (4*t^5.775)/g1^4 + t^5.887/g1^2 + g1^2*t^6.113 - g1^6*t^6.338 + t^6.655/g1^15 + t^6.768/g1^13 + (2*t^6.88)/g1^11 + (3*t^6.993)/g1^9 + (4*t^7.106)/g1^7 + (3*t^7.218)/g1^5 + (3*t^7.331)/g1^3 + (4*t^7.444)/g1 + 3*g1*t^7.556 + t^7.648/g1^24 + g1^3*t^7.669 + 2*g1^5*t^7.782 + t^7.873/g1^20 + 2*g1^7*t^7.894 + (2*t^7.986)/g1^18 + t^8.099/g1^16 + (2*t^8.211)/g1^14 + g1^13*t^8.232 + (5*t^8.324)/g1^12 + t^8.437/g1^10 + t^8.549/g1^8 + (6*t^8.662)/g1^6 - t^8.775/g1^4 - (2*t^8.887)/g1^2 - t^4.444/(g1*y) - t^6.993/(g1^9*y) - (2*t^7.331)/(g1^3*y) + (2*g1*t^7.556)/y + (g1^7*t^7.894)/y + t^8.324/(g1^12*y) + (2*t^8.437)/(g1^10*y) + t^8.549/(g1^8*y) + (3*t^8.662)/(g1^6*y) + (3*t^8.775)/(g1^4*y) + (3*t^8.887)/(g1^2*y) - (t^4.444*y)/g1 - (t^6.993*y)/g1^9 - (2*t^7.331*y)/g1^3 + 2*g1*t^7.556*y + g1^7*t^7.894*y + (t^8.324*y)/g1^12 + (2*t^8.437*y)/g1^10 + (t^8.549*y)/g1^8 + (3*t^8.662*y)/g1^6 + (3*t^8.775*y)/g1^4 + (3*t^8.887*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1300 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}^{2}$ + ${ }M_{2}M_{6}$ 0.7136 0.8827 0.8085 [M:[0.9544, 1.0912, 0.8177, 0.9088, 1.0, 0.9088], q:[0.4316, 0.614], qb:[0.4772, 0.5684], phi:[0.4772]] t^2.453 + 2*t^2.727 + 2*t^2.863 + t^3. + t^3.137 + t^4.021 + t^4.158 + t^4.295 + t^4.432 + 2*t^4.568 + t^4.705 + t^4.842 + t^4.906 + t^4.979 + t^5.115 + 2*t^5.18 + 2*t^5.316 + 3*t^5.453 + 3*t^5.59 + 4*t^5.727 + 2*t^5.863 - t^6. - t^4.432/y - t^4.432*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
528 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{4}$ 0.7369 0.9109 0.809 [M:[0.8862, 1.0, 0.7723, 1.0, 0.7723], q:[0.5569, 0.5569], qb:[0.4431, 0.6707], phi:[0.4431]] 2*t^2.317 + 2*t^2.659 + 2*t^3. + t^3.341 + t^3.988 + 2*t^4.329 + 3*t^4.634 + 4*t^4.671 + 4*t^4.976 + 2*t^5.012 + 6*t^5.317 + t^5.354 + 2*t^5.659 - t^6. - t^4.329/y - t^4.329*y detail