Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
8186 Sp2adj1nf1 $\phi_1^2X_1$ + $ q_1^2q_2^2$ + $ \phi_1^4X_2$ 1.1224 1.2057 0.9309 [X:[1.6667, 1.3333], M:[], q:[0.5, 0.5], qb:[], phi:[0.1667]] [X:[[0], [0]], M:[], q:[[-1], [1]], qb:[], phi:[[0]]] 1 {a: 431/384, c: 463/384, X1: 5/3, X2: 4/3, q1: 1/2, q2: 1/2, phi1: 1/6}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_1q_2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ \phi_1q_1^2$, $ \phi_1q_2^2$, $ \phi_1^2q_1q_2$, $ X_2$, $ \phi_1^3q_1^2$, $ \phi_1^3q_1q_2$, $ \phi_1^3q_2^2$, $ \phi_1^3q_1^2$, $ \phi_1^3q_2^2$, $ X_1$ . -3 t^3.+3*t^3.5+2*t^4.+3*t^4.5+t^5.-3*t^6.+5*t^7.+6*t^7.5+13*t^8.+7*t^8.5+t^8./y^2-t^3.5/y-t^4.5/y-t^6.5/y-(3*t^7.)/y-(2*t^7.5)/y-(3*t^8.)/y-t^8.5/y-t^3.5*y-t^4.5*y-t^6.5*y-3*t^7.*y-2*t^7.5*y-3*t^8.*y-t^8.5*y+t^8.*y^2 t^3.+t^3.5+t^3.5/g1^2+g1^2*t^3.5+2*t^4.+t^4.5+t^4.5/g1^2+g1^2*t^4.5+t^5.-t^6.-t^6./g1^2-g1^2*t^6.+3*t^7.+t^7./g1^4+g1^4*t^7.+2*t^7.5+(2*t^7.5)/g1^2+2*g1^2*t^7.5+7*t^8.+t^8./g1^4+(2*t^8.)/g1^2+2*g1^2*t^8.+g1^4*t^8.+3*t^8.5+(2*t^8.5)/g1^2+2*g1^2*t^8.5+t^8./y^2-t^3.5/y-t^4.5/y-t^6.5/y-t^7./y-t^7./(g1^2*y)-(g1^2*t^7.)/y-(2*t^7.5)/y-t^8./y-t^8./(g1^2*y)-(g1^2*t^8.)/y-t^8.5/y-t^3.5*y-t^4.5*y-t^6.5*y-t^7.*y-(t^7.*y)/g1^2-g1^2*t^7.*y-2*t^7.5*y-t^8.*y-(t^8.*y)/g1^2-g1^2*t^8.*y-t^8.5*y+t^8.*y^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
8207 $\phi_1^2X_1$ + $ q_1^2q_2^2$ + $ \phi_1^4X_2$ + $ M_1\phi_1q_1q_2$ 1.1367 1.2305 0.9238 [X:[1.6667, 1.3333], M:[0.8333], q:[0.5, 0.5], qb:[], phi:[0.1667]] t^2.5+t^3.+2*t^3.5+2*t^4.+3*t^4.5+2*t^5.+t^5.5-t^6.-t^3.5/y-t^4.5/y-t^6./y-t^3.5*y-t^4.5*y-t^6.*y detail {a: 291/256, c: 315/256, X1: 5/3, X2: 4/3, M1: 5/6, q1: 1/2, q2: 1/2, phi1: 1/6}
8204 $\phi_1^2X_1$ + $ q_1^2q_2^2$ + $ \phi_1^4X_2$ + $ M_1\phi_1q_1^2$ 1.138 1.2339 0.9222 [X:[1.6667, 1.3333], M:[0.7981], q:[0.5176, 0.4824], qb:[], phi:[0.1667]] t^2.39+t^3.+t^3.39+t^3.5+2*t^4.+t^4.39+t^4.5+t^4.61+t^4.79+t^5.+t^5.39+t^5.79-t^6.-t^3.5/y-t^4.5/y-t^5.89/y-t^3.5*y-t^4.5*y-t^5.89*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
8183 Sp2adj1nf1 $\phi_1^2X_1$ 1.1597 1.2847 0.9027 [X:[1.6249], M:[], q:[0.4374, 0.4374], qb:[], phi:[0.1875]] t^2.25+t^2.62+3*t^3.19+t^3.75+3*t^4.31+t^4.5+2*t^4.87+t^5.25+3*t^5.44+3*t^5.81-3*t^6.-t^3.56/y-t^4.69/y-t^5.81/y-t^3.56*y-t^4.69*y-t^5.81*y detail