Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
79490 Sp2s2nf1 ${}M_{1}S_{1}S_{2}$ + ${ }M_{2}S_{1}^{2}$ 2.4106 2.5416 0.9485 [X:[], M:[0.8703, 0.8499], q:[0.6109, 0.6109], qb:[], phi:[], S:[0.575, 0.5547], Sb:[], A:[], Ab:[]] [X:[], M:[[0, -1, -1], [0, -2, 0]], q:[[-1, -6, -6], [1, 0, 0]], qb:[], phi:[], S:[[0, 1, 0], [0, 0, 1]], Sb:[], A:[], Ab:[]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }S_{2}^{2}$, ${ }q_{1}q_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}^{2}S_{2}$, ${ }q_{1}q_{2}S_{2}$, ${ }q_{2}^{2}S_{2}$, ${ }q_{2}^{2}S_{1}$, ${ }q_{1}^{2}S_{1}$, ${ }q_{1}q_{2}S_{1}$, ${ }M_{2}S_{2}^{2}$ ${}$ -5 t^2.55 + t^2.611 + t^3.328 + t^3.666 + t^5.1 + t^5.161 + t^5.222 + 3*t^5.33 + 3*t^5.391 + t^5.878 - 5*t^6. - t^6.061 + t^6.215 + t^6.276 + 2*t^6.656 + t^6.717 + 2*t^6.778 + t^6.839 + t^6.9 + 2*t^6.994 + 4*t^7.055 + t^7.116 + t^7.331 + t^7.65 - 4*t^7.664 + t^7.711 - 4*t^7.725 + t^7.772 + t^7.833 + 3*t^7.879 + 3*t^7.94 + 3*t^8.334 + t^8.428 - 5*t^8.55 - 5*t^8.611 + 6*t^8.658 - t^8.672 + 10*t^8.719 + t^8.765 + 7*t^8.78 + t^8.826 + 3*t^8.841 + t^8.887 + 3*t^8.995 - t^4.664/y - t^4.725/y - t^7.214/y - t^7.275/y - (2*t^7.992)/y - (2*t^8.053)/y - t^8.114/y + t^8.161/y - t^8.175/y - t^8.33/y - t^8.391/y + t^8.878/y + t^8.939/y - t^4.664*y - t^4.725*y - t^7.214*y - t^7.275*y - 2*t^7.992*y - 2*t^8.053*y - t^8.114*y + t^8.161*y - t^8.175*y - t^8.33*y - t^8.391*y + t^8.878*y + t^8.939*y t^2.55/g2^2 + t^2.611/(g2*g3) + g3^2*t^3.328 + t^3.666/(g2^6*g3^6) + t^5.1/g2^4 + t^5.161/(g2^3*g3) + t^5.222/(g2^2*g3^2) + t^5.33/(g1^2*g2^12*g3^11) + t^5.33/(g2^6*g3^5) + g1^2*g3*t^5.33 + g1^2*g2*t^5.391 + t^5.391/(g1^2*g2^11*g3^12) + t^5.391/(g2^5*g3^6) + (g3^2*t^5.878)/g2^2 - 3*t^6. - t^6./(g1^2*g2^6*g3^6) - g1^2*g2^6*g3^6*t^6. - (g2*t^6.061)/g3 + t^6.215/(g2^8*g3^6) + t^6.276/(g2^7*g3^7) + 2*g3^4*t^6.656 + g2*g3^3*t^6.717 + 2*g2^2*g3^2*t^6.778 + g2^3*g3*t^6.839 + g2^4*t^6.9 + (2*t^6.994)/(g2^6*g3^4) + t^7.055/(g1^2*g2^11*g3^11) + (2*t^7.055)/(g2^5*g3^5) + g1^2*g2*g3*t^7.055 + t^7.116/(g2^4*g3^6) + t^7.331/(g2^12*g3^12) + t^7.65/g2^6 - t^7.664/(g1^2*g2^6*g3^5) - 2*g3*t^7.664 - g1^2*g2^6*g3^7*t^7.664 + t^7.711/(g2^5*g3) - 2*g2*t^7.725 - t^7.725/(g1^2*g2^5*g3^6) - g1^2*g2^7*g3^6*t^7.725 + t^7.772/(g2^4*g3^2) + t^7.833/(g2^3*g3^3) + t^7.879/(g1^2*g2^14*g3^11) + t^7.879/(g2^8*g3^5) + (g1^2*g3*t^7.879)/g2^2 + (g1^2*t^7.94)/g2 + t^7.94/(g1^2*g2^13*g3^12) + t^7.94/(g2^7*g3^6) + t^8.334/g1^2 + g2^6*g3^6*t^8.334 + g1^2*g2^12*g3^12*t^8.334 + (g3^2*t^8.428)/g2^4 - (3*t^8.55)/g2^2 - t^8.55/(g1^2*g2^8*g3^6) - g1^2*g2^4*g3^6*t^8.55 - t^8.611/(g1^2*g2^7*g3^7) - (3*t^8.611)/(g2*g3) - g1^2*g2^5*g3^5*t^8.611 + (2*t^8.658)/(g1^2*g2^12*g3^9) + (2*t^8.658)/(g2^6*g3^3) + 2*g1^2*g3^3*t^8.658 - t^8.672/g3^2 + (3*t^8.719)/(g1^2*g2^11*g3^10) + (4*t^8.719)/(g2^5*g3^4) + 3*g1^2*g2*g3^2*t^8.719 + t^8.765/(g2^10*g3^6) + (2*t^8.78)/(g1^2*g2^10*g3^11) + (3*t^8.78)/(g2^4*g3^5) + 2*g1^2*g2^2*g3*t^8.78 + t^8.826/(g2^9*g3^7) + g1^2*g2^3*t^8.841 + t^8.841/(g1^2*g2^9*g3^12) + t^8.841/(g2^3*g3^6) + t^8.887/(g2^8*g3^8) + t^8.995/(g1^2*g2^18*g3^17) + t^8.995/(g2^12*g3^11) + (g1^2*t^8.995)/(g2^6*g3^5) - (g3*t^4.664)/y - (g2*t^4.725)/y - (g3*t^7.214)/(g2^2*y) - t^7.275/(g2*y) - (2*g3^3*t^7.992)/y - (2*g2*g3^2*t^8.053)/y - (g2^2*g3*t^8.114)/y + t^8.161/(g2^3*g3*y) - (g2^3*t^8.175)/y - t^8.33/(g2^6*g3^5*y) - t^8.391/(g2^5*g3^6*y) + (g3^2*t^8.878)/(g2^2*y) + (g3*t^8.939)/(g2*y) - g3*t^4.664*y - g2*t^4.725*y - (g3*t^7.214*y)/g2^2 - (t^7.275*y)/g2 - 2*g3^3*t^7.992*y - 2*g2*g3^2*t^8.053*y - g2^2*g3*t^8.114*y + (t^8.161*y)/(g2^3*g3) - g2^3*t^8.175*y - (t^8.33*y)/(g2^6*g3^5) - (t^8.391*y)/(g2^5*g3^6) + (g3^2*t^8.878*y)/g2^2 + (g3*t^8.939*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
79517 ${}M_{1}S_{1}S_{2}$ + ${ }M_{2}S_{1}^{2}$ + ${ }M_{1}M_{2}$ 2.295 2.3785 0.9649 [X:[], M:[0.9046, 1.0954], q:[0.7138, 0.7138], qb:[], phi:[], S:[0.4523, 0.6431], Sb:[], A:[], Ab:[]] t^2.714 + t^3.286 + t^3.859 + t^4.283 + t^5.428 + 3*t^5.64 - 3*t^6. - t^4.357/y - t^4.929/y - t^4.357*y - t^4.929*y detail
79513 ${}M_{1}S_{1}S_{2}$ + ${ }M_{2}S_{1}^{2}$ + ${ }M_{2}^{2}$ 2.3699 2.4822 0.9548 [X:[], M:[0.8802, 1.0], q:[0.6407, 0.6407], qb:[], phi:[], S:[0.5, 0.6198], Sb:[], A:[], Ab:[]] t^2.641 + t^3. + t^3.719 + t^3.844 + t^5.281 + 3*t^5.344 + 3*t^5.704 - 3*t^6. - t^4.5/y - t^4.859/y - t^4.5*y - t^4.859*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
79473 Sp2s2nf1 ${}M_{1}S_{1}S_{2}$ 2.3983 2.5185 0.9523 [X:[], M:[0.8718], q:[0.6154, 0.6154], qb:[], phi:[], S:[0.5641, 0.5641], Sb:[], A:[], Ab:[]] t^2.615 + 2*t^3.385 + t^3.692 + t^5.231 + 6*t^5.385 - 5*t^6. - (2*t^4.692)/y - 2*t^4.692*y detail {a: 6485/2704, c: 3405/1352, M1: 34/39, q1: 8/13, q2: 8/13, S1: 22/39, S2: 22/39}