Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
79 | SU2adj1nf2 | $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2q_1\tilde{q}_1$ | 0.7394 | 0.8922 | 0.8287 | [X:[], M:[0.8151, 0.7774], q:[0.6113, 0.5736], qb:[0.6113, 0.5736], phi:[0.4075]] | [X:[], M:[[0, -2, -2], [1, -4, -2]], q:[[-1, 2, 2], [1, 0, 0]], qb:[[0, 2, 0], [0, 0, 2]], phi:[[0, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ \phi_1^2$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_2^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_1M_2$, $ M_2\phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ M_1^2$, $ M_1\phi_1^2$, $ \phi_1^4$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1^2$, $ M_2q_2\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$ | $M_1\tilde{q}_1\tilde{q}_2$ | -2 | t^2.33 + 2*t^2.45 + t^3.44 + 3*t^3.55 + 4*t^4.66 + 6*t^4.78 + 6*t^4.89 + t^5.77 + t^5.89 - 2*t^6. - 4*t^6.11 + t^6.88 + 7*t^7. + 13*t^7.11 + 7*t^7.22 + 6*t^7.34 + 4*t^8.11 + 7*t^8.22 - 5*t^8.45 - 5*t^8.56 - t^4.22/y - t^6.55/y - (2*t^6.67)/y + (4*t^7.78)/y + (2*t^7.89)/y + t^8.77/y + (4*t^8.89)/y - t^4.22*y - t^6.55*y - 2*t^6.67*y + 4*t^7.78*y + 2*t^7.89*y + t^8.77*y + 4*t^8.89*y | (g1*t^2.33)/(g2^4*g3^2) + (2*t^2.45)/(g2^2*g3^2) + g1*g3^2*t^3.44 + g1*g2^2*t^3.55 + g2^2*g3^2*t^3.55 + (g2^2*g3^4*t^3.55)/g1 + (g1^2*t^4.66)/(g2^8*g3^4) + (g1^2*t^4.66)/(g2*g3) + (g1*g3*t^4.66)/g2 + (g3^3*t^4.66)/g2 + (2*g1*t^4.78)/(g2^6*g3^4) + (g1*g2*t^4.78)/g3 + 2*g2*g3*t^4.78 + (g2*g3^3*t^4.78)/g1 + (3*t^4.89)/(g2^4*g3^4) + (g2^3*t^4.89)/g3 + (g2^3*g3*t^4.89)/g1 + (g2^3*g3^3*t^4.89)/g1^2 + (g1^2*t^5.77)/g2^4 + (g1*t^5.89)/g2^2 - 2*t^6. - (2*g2^2*t^6.11)/g1 - (g2^2*t^6.11)/g3^2 - (g2^2*g3^2*t^6.11)/g1^2 + g1^2*g3^4*t^6.88 + (g1^3*t^7.)/(g2^12*g3^6) + (g1^3*t^7.)/(g2^5*g3^3) + (g1^2*t^7.)/(g2^5*g3) + (g1*g3*t^7.)/g2^5 + g1^2*g2^2*g3^2*t^7. + g1*g2^2*g3^4*t^7. + g2^2*g3^6*t^7. + g1^2*g2^4*t^7.11 + (2*g1^2*t^7.11)/(g2^10*g3^6) + (2*g1^2*t^7.11)/(g2^3*g3^3) + (2*g1*t^7.11)/(g2^3*g3) + (2*g3*t^7.11)/g2^3 + g1*g2^4*g3^2*t^7.11 + g2^4*g3^4*t^7.11 + (g2^4*g3^6*t^7.11)/g1 + (g2^4*g3^8*t^7.11)/g1^2 + (3*g1*t^7.22)/(g2^8*g3^6) + (g1*t^7.22)/(g2*g3^3) + (2*t^7.22)/(g2*g3) + (g3*t^7.22)/(g1*g2) + (4*t^7.34)/(g2^6*g3^6) + (g2*t^7.34)/g3^3 + (g2*g3*t^7.34)/g1^2 + (g1^3*t^8.11)/(g2^8*g3^2) + (g1^3*g3*t^8.11)/g2 + (g1^2*g3^3*t^8.11)/g2 + (g1*g3^5*t^8.11)/g2 + (g1^2*t^8.22)/(g2^6*g3^2) + (g1^3*g2*t^8.22)/g3 + g1^2*g2*g3*t^8.22 + 2*g1*g2*g3^3*t^8.22 + g2*g3^5*t^8.22 + (g2*g3^7*t^8.22)/g1 - t^8.33/g2^4 - (g1^2*t^8.33)/(g2^4*g3^4) - (2*g1*t^8.33)/(g2^4*g3^2) + (g1^2*g2^3*t^8.33)/g3 + g1*g2^3*g3*t^8.33 + (g2^3*g3^5*t^8.33)/g1 + (g2^3*g3^7*t^8.33)/g1^2 - t^8.45/(g1*g2^2) - (g1*t^8.45)/(g2^2*g3^4) - (5*t^8.45)/(g2^2*g3^2) + (g1*g2^5*t^8.45)/g3 + (g2^5*g3^7*t^8.45)/g1^3 - t^8.56/g1^2 - t^8.56/g3^4 - (3*t^8.56)/(g1*g3^2) - t^4.22/(g2*g3*y) - (g1*t^6.55)/(g2^5*g3^3*y) - (2*t^6.67)/(g2^3*g3^3*y) + (2*g1*t^7.78)/(g2^6*g3^4*y) + (2*g2*g3*t^7.78)/y + t^7.89/(g2^4*g3^4*y) + (g2^3*g3*t^7.89)/(g1*y) + (g1^2*t^8.77)/(g2^4*y) + (3*g1*t^8.89)/(g2^2*y) - (g1^2*t^8.89)/(g2^9*g3^5*y) + (g1^2*t^8.89)/(g2^2*g3^2*y) + (g3^2*t^8.89)/(g2^2*y) - (t^4.22*y)/(g2*g3) - (g1*t^6.55*y)/(g2^5*g3^3) - (2*t^6.67*y)/(g2^3*g3^3) + (2*g1*t^7.78*y)/(g2^6*g3^4) + 2*g2*g3*t^7.78*y + (t^7.89*y)/(g2^4*g3^4) + (g2^3*g3*t^7.89*y)/g1 + (g1^2*t^8.77*y)/g2^4 + (3*g1*t^8.89*y)/g2^2 - (g1^2*t^8.89*y)/(g2^9*g3^5) + (g1^2*t^8.89*y)/(g2^2*g3^2) + (g3^2*t^8.89*y)/g2^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
125 | $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2q_1\tilde{q}_1$ + $ M_2\tilde{q}_1\tilde{q}_2$ | 0.7382 | 0.8885 | 0.8308 | [X:[], M:[0.8108, 0.8108], q:[0.5946, 0.5946], qb:[0.5946, 0.5946], phi:[0.4054]] | 3*t^2.43 + 4*t^3.57 + 10*t^4.78 + 6*t^4.86 - 4*t^6. - t^4.22/y - t^4.22*y | detail | |
126 | $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_2$ | 0.7546 | 0.9174 | 0.8226 | [X:[], M:[0.7904, 0.7904, 0.7904], q:[0.6048, 0.6048], qb:[0.6048, 0.6048], phi:[0.3952]] | 4*t^2.37 + 3*t^3.63 + 10*t^4.74 + 10*t^4.81 - 4*t^6. - t^4.19/y - t^4.19*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
52 | SU2adj1nf2 | $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ | 0.7232 | 0.8641 | 0.8369 | [X:[], M:[0.837], q:[0.5815, 0.5815], qb:[0.5815, 0.5815], phi:[0.4185]] | 2*t^2.51 + 5*t^3.49 + 10*t^4.74 + 3*t^5.02 - 6*t^6. - t^4.26/y - t^4.26*y | detail |