Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
710 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$ 0.7021 0.8818 0.7962 [M:[0.9685, 1.1251, 0.9685, 0.8749, 0.6876, 0.6876], q:[0.7813, 0.4375], qb:[0.594, 0.4375], phi:[0.4375]] [M:[[-7, 1], [4, 0], [-11, -1], [-4, 0], [10, 2], [2, -2]], q:[[1, 0], [-4, -1]], qb:[[11, 0], [0, 1]], phi:[[-2, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{5}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }q_{1}q_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }M_{5}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{5}$, ${ }M_{4}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{6}q_{1}q_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{5}q_{1}q_{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{1}^{2}$ ${}M_{5}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ -3 2*t^2.063 + 2*t^2.625 + 2*t^2.906 + 2*t^3.656 + t^3.937 + 4*t^4.126 + 2*t^4.407 + 4*t^4.688 + t^4.876 + 4*t^4.969 + 3*t^5.249 + 2*t^5.53 + 4*t^5.719 + 3*t^5.811 - 3*t^6. + 6*t^6.189 + 2*t^6.281 + 2*t^6.47 + 5*t^6.562 + 6*t^6.751 + 2*t^6.939 + 8*t^7.031 + 6*t^7.312 + t^7.501 + 4*t^7.593 + 6*t^7.782 + 10*t^7.874 - 6*t^8.063 + 2*t^8.155 + 8*t^8.252 + 2*t^8.344 + 3*t^8.436 + 4*t^8.533 + 4*t^8.717 + 8*t^8.813 - 6*t^8.906 - t^4.312/y - (2*t^6.375)/y - t^6.937/y + t^7.126/y - (2*t^7.218)/y + (2*t^7.407)/y + (5*t^7.688)/y + (4*t^7.969)/y + (3*t^8.249)/y - (3*t^8.438)/y + (4*t^8.53)/y + (4*t^8.719)/y + t^8.811/y - t^4.312*y - 2*t^6.375*y - t^6.937*y + t^7.126*y - 2*t^7.218*y + 2*t^7.407*y + 5*t^7.688*y + 4*t^7.969*y + 3*t^8.249*y - 3*t^8.438*y + 4*t^8.53*y + 4*t^8.719*y + t^8.811*y (g1^2*t^2.063)/g2^2 + g1^10*g2^2*t^2.063 + (2*t^2.625)/g1^4 + t^2.906/(g1^11*g2) + (g2*t^2.906)/g1^7 + t^3.656/(g1^3*g2) + g1*g2*t^3.656 + t^3.937/g1^6 + 2*g1^12*t^4.126 + (g1^4*t^4.126)/g2^4 + g1^20*g2^4*t^4.126 + (g1^5*t^4.407)/g2 + g1^9*g2*t^4.407 + (2*t^4.688)/(g1^2*g2^2) + 2*g1^6*g2^2*t^4.688 + g1^20*t^4.876 + t^4.969/(g1^9*g2^3) + t^4.969/(g1^5*g2) + (g2*t^4.969)/g1 + g1^3*g2^3*t^4.969 + (3*t^5.249)/g1^8 + t^5.53/(g1^15*g2) + (g2*t^5.53)/g1^11 + t^5.719/(g1*g2^3) + (g1^3*t^5.719)/g2 + g1^7*g2*t^5.719 + g1^11*g2^3*t^5.719 + t^5.811/g1^18 + t^5.811/(g1^22*g2^2) + (g2^2*t^5.811)/g1^14 - 3*t^6. + (g1^6*t^6.189)/g2^6 + (2*g1^14*t^6.189)/g2^2 + 2*g1^22*g2^2*t^6.189 + g1^30*g2^6*t^6.189 + t^6.281/(g1^7*g2) + (g2*t^6.281)/g1^3 + (g1^7*t^6.47)/g2^3 + g1^19*g2^3*t^6.47 + (3*t^6.562)/g1^10 + t^6.562/(g1^14*g2^2) + (g2^2*t^6.562)/g1^6 + 2*g1^8*t^6.751 + (2*t^6.751)/g2^4 + 2*g1^16*g2^4*t^6.751 + (g1^22*t^6.939)/g2^2 + g1^30*g2^2*t^6.939 + t^7.031/(g1^7*g2^5) + t^7.031/(g1^3*g2^3) + (2*g1*t^7.031)/g2 + 2*g1^5*g2*t^7.031 + g1^9*g2^3*t^7.031 + g1^13*g2^5*t^7.031 + (3*t^7.312)/(g1^6*g2^2) + 3*g1^2*g2^2*t^7.312 + g1^16*t^7.501 + t^7.593/(g1^13*g2^3) + t^7.593/(g1^9*g2) + (g2*t^7.593)/g1^5 + (g2^3*t^7.593)/g1 + (g1*t^7.782)/g2^5 + (g1^5*t^7.782)/g2^3 + (g1^9*t^7.782)/g2 + g1^13*g2*t^7.782 + g1^17*g2^3*t^7.782 + g1^21*g2^5*t^7.782 + (6*t^7.874)/g1^12 + t^7.874/(g1^20*g2^4) + t^7.874/(g1^16*g2^2) + (g2^2*t^7.874)/g1^8 + (g2^4*t^7.874)/g1^4 - (3*g1^2*t^8.063)/g2^2 - 3*g1^10*g2^2*t^8.063 + t^8.155/(g1^19*g2) + (g2*t^8.155)/g1^15 + 2*g1^24*t^8.252 + (g1^8*t^8.252)/g2^8 + (2*g1^16*t^8.252)/g2^4 + 2*g1^32*g2^4*t^8.252 + g1^40*g2^8*t^8.252 + t^8.344/(g1^5*g2^3) + g1^7*g2^3*t^8.344 + t^8.436/g1^22 + t^8.436/(g1^26*g2^2) + (g2^2*t^8.436)/g1^18 + (g1^9*t^8.533)/g2^5 + (g1^17*t^8.533)/g2 + g1^21*g2*t^8.533 + g1^29*g2^5*t^8.533 - (4*t^8.625)/g1^4 + t^8.625/(g1^12*g2^4) + t^8.625/(g1^8*g2^2) + g2^2*t^8.625 + g1^4*g2^4*t^8.625 + t^8.717/(g1^33*g2^3) + t^8.717/(g1^29*g2) + (g2*t^8.717)/g1^25 + (g2^3*t^8.717)/g1^21 + (2*g1^2*t^8.813)/g2^6 + (2*g1^10*t^8.813)/g2^2 + 2*g1^18*g2^2*t^8.813 + 2*g1^26*g2^6*t^8.813 - t^8.906/(g1^15*g2^3) - (2*t^8.906)/(g1^11*g2) - (2*g2*t^8.906)/g1^7 - (g2^3*t^8.906)/g1^3 - t^4.312/(g1^2*y) - t^6.375/(g2^2*y) - (g1^8*g2^2*t^6.375)/y - t^6.937/(g1^6*y) + (g1^12*t^7.126)/y - t^7.218/(g1^13*g2*y) - (g2*t^7.218)/(g1^9*y) + (g1^5*t^7.407)/(g2*y) + (g1^9*g2*t^7.407)/y + (g1^2*t^7.688)/y + (2*t^7.688)/(g1^2*g2^2*y) + (2*g1^6*g2^2*t^7.688)/y + t^7.969/(g1^9*g2^3*y) + t^7.969/(g1^5*g2*y) + (g2*t^7.969)/(g1*y) + (g1^3*g2^3*t^7.969)/y + t^8.249/(g1^8*y) + t^8.249/(g1^12*g2^2*y) + (g2^2*t^8.249)/(g1^4*y) - (g1^10*t^8.438)/y - (g1^2*t^8.438)/(g2^4*y) - (g1^18*g2^4*t^8.438)/y + (2*t^8.53)/(g1^15*g2*y) + (2*g2*t^8.53)/(g1^11*y) + t^8.719/(g1*g2^3*y) + (g1^3*t^8.719)/(g2*y) + (g1^7*g2*t^8.719)/y + (g1^11*g2^3*t^8.719)/y + t^8.811/(g1^18*y) - (t^4.312*y)/g1^2 - (t^6.375*y)/g2^2 - g1^8*g2^2*t^6.375*y - (t^6.937*y)/g1^6 + g1^12*t^7.126*y - (t^7.218*y)/(g1^13*g2) - (g2*t^7.218*y)/g1^9 + (g1^5*t^7.407*y)/g2 + g1^9*g2*t^7.407*y + g1^2*t^7.688*y + (2*t^7.688*y)/(g1^2*g2^2) + 2*g1^6*g2^2*t^7.688*y + (t^7.969*y)/(g1^9*g2^3) + (t^7.969*y)/(g1^5*g2) + (g2*t^7.969*y)/g1 + g1^3*g2^3*t^7.969*y + (t^8.249*y)/g1^8 + (t^8.249*y)/(g1^12*g2^2) + (g2^2*t^8.249*y)/g1^4 - g1^10*t^8.438*y - (g1^2*t^8.438*y)/g2^4 - g1^18*g2^4*t^8.438*y + (2*t^8.53*y)/(g1^15*g2) + (2*g2*t^8.53*y)/g1^11 + (t^8.719*y)/(g1*g2^3) + (g1^3*t^8.719*y)/g2 + g1^7*g2*t^8.719*y + g1^11*g2^3*t^8.719*y + (t^8.811*y)/g1^18


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
424 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ 0.6815 0.8422 0.8091 [M:[0.9604, 1.1268, 0.9689, 0.8732, 0.6818], q:[0.7817, 0.4408], qb:[0.5988, 0.4324], phi:[0.4366]] t^2.045 + 2*t^2.62 + t^2.881 + t^2.907 + t^3.642 + t^3.668 + t^3.904 + t^3.929 + t^4.091 + t^4.141 + t^4.403 + t^4.429 + 2*t^4.665 + t^4.902 + t^4.927 + t^4.952 + 3*t^5.239 + t^5.501 + t^5.526 + t^5.687 + t^5.713 + t^5.763 + t^5.788 + t^5.813 + t^5.949 - 3*t^6. - t^4.31/y - t^4.31*y detail