Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6847 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{7}$ + ${ }M_{1}X_{1}$ + ${ }M_{2}M_{8}$ + ${ }M_{9}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6202 0.7835 0.7915 [X:[1.4139], M:[0.5861, 1.0139, 0.7723, 0.8277, 1.2, 0.8, 0.9861, 0.9861, 0.8], q:[0.9208, 0.4931], qb:[0.3069, 0.6792], phi:[0.4]] [X:[[2]], M:[[-2], [2], [-4], [4], [0], [0], [-2], [-2], [0]], q:[[3], [-1]], qb:[[1], [-3]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{6}$, ${ }M_{9}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{7}$, ${ }M_{8}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{9}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{9}$, ${ }M_{9}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{9}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}M_{9}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{3}M_{8}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{6}M_{8}$, ${ }M_{7}M_{9}$, ${ }M_{8}M_{9}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{4}M_{8}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{7}^{2}$, ${ }M_{7}M_{8}$, ${ }M_{8}^{2}$ ${}$ -3 t^2.317 + 3*t^2.4 + t^2.483 + 2*t^2.958 + t^4.158 + t^4.242 + t^4.634 + 3*t^4.717 + 8*t^4.8 + 3*t^4.883 + t^4.966 + 2*t^5.275 + 5*t^5.358 + t^5.442 + 2*t^5.917 - 3*t^6. - t^6.083 + t^6.475 + t^6.558 + t^6.642 + t^6.725 + t^6.95 + 3*t^7.034 + 8*t^7.117 + 13*t^7.2 + 6*t^7.283 + 3*t^7.366 + t^7.45 + 2*t^7.592 + 5*t^7.675 + 9*t^7.758 - t^7.842 + t^7.925 + 2*t^8.234 + t^8.317 - 10*t^8.4 - 6*t^8.483 - t^8.566 + t^8.792 + 3*t^8.875 - 5*t^8.958 - t^4.2/y - t^6.517/y - (2*t^6.6)/y - t^6.683/y - t^7.158/y + t^7.242/y + (4*t^7.717)/y + (6*t^7.8)/y + (4*t^7.883)/y + (2*t^8.275)/y + (6*t^8.358)/y + (2*t^8.442)/y - t^8.834/y - t^8.917/y - t^4.2*y - t^6.517*y - 2*t^6.6*y - t^6.683*y - t^7.158*y + t^7.242*y + 4*t^7.717*y + 6*t^7.8*y + 4*t^7.883*y + 2*t^8.275*y + 6*t^8.358*y + 2*t^8.442*y - t^8.834*y - t^8.917*y t^2.317/g1^4 + 3*t^2.4 + g1^4*t^2.483 + (2*t^2.958)/g1^2 + t^4.158/g1^2 + g1^2*t^4.242 + t^4.634/g1^8 + (3*t^4.717)/g1^4 + 8*t^4.8 + 3*g1^4*t^4.883 + g1^8*t^4.966 + (2*t^5.275)/g1^6 + (5*t^5.358)/g1^2 + g1^2*t^5.442 + (2*t^5.917)/g1^4 - 3*t^6. - g1^4*t^6.083 + t^6.475/g1^6 + t^6.558/g1^2 + g1^2*t^6.642 + g1^6*t^6.725 + t^6.95/g1^12 + (3*t^7.034)/g1^8 + (8*t^7.117)/g1^4 + 13*t^7.2 + 6*g1^4*t^7.283 + 3*g1^8*t^7.366 + g1^12*t^7.45 + (2*t^7.592)/g1^10 + (5*t^7.675)/g1^6 + (9*t^7.758)/g1^2 - g1^2*t^7.842 + g1^6*t^7.925 + (2*t^8.234)/g1^8 + t^8.317/g1^4 - 10*t^8.4 - 6*g1^4*t^8.483 - g1^8*t^8.566 + t^8.792/g1^10 + (3*t^8.875)/g1^6 - (5*t^8.958)/g1^2 - t^4.2/y - t^6.517/(g1^4*y) - (2*t^6.6)/y - (g1^4*t^6.683)/y - t^7.158/(g1^2*y) + (g1^2*t^7.242)/y + (4*t^7.717)/(g1^4*y) + (6*t^7.8)/y + (4*g1^4*t^7.883)/y + (2*t^8.275)/(g1^6*y) + (6*t^8.358)/(g1^2*y) + (2*g1^2*t^8.442)/y - t^8.834/(g1^8*y) - t^8.917/(g1^4*y) - t^4.2*y - (t^6.517*y)/g1^4 - 2*t^6.6*y - g1^4*t^6.683*y - (t^7.158*y)/g1^2 + g1^2*t^7.242*y + (4*t^7.717*y)/g1^4 + 6*t^7.8*y + 4*g1^4*t^7.883*y + (2*t^8.275*y)/g1^6 + (6*t^8.358*y)/g1^2 + 2*g1^2*t^8.442*y - (t^8.834*y)/g1^8 - (t^8.917*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
5328 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{7}$ + ${ }M_{1}X_{1}$ + ${ }M_{2}M_{8}$ 0.6037 0.7545 0.8 [X:[1.4139], M:[0.5861, 1.0139, 0.7723, 0.8277, 1.2, 0.8, 0.9861, 0.9861], q:[0.9208, 0.4931], qb:[0.3069, 0.6792], phi:[0.4]] t^2.317 + 2*t^2.4 + t^2.483 + 2*t^2.958 + t^3.6 + t^4.158 + t^4.242 + t^4.634 + 2*t^4.717 + 5*t^4.8 + 2*t^4.883 + t^4.966 + 2*t^5.275 + 3*t^5.358 + t^5.442 + 3*t^5.917 - t^6. - t^4.2/y - t^4.2*y detail