Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
680 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$ 0.7119 0.9046 0.787 [M:[0.9822, 1.119, 0.9822, 0.6785, 0.6785, 0.6785], q:[0.7798, 0.4405], qb:[0.5773, 0.4405], phi:[0.4405]] [M:[[-7, 1], [4, 0], [-11, -1], [6, 0], [10, 2], [2, -2]], q:[[1, 0], [-4, -1]], qb:[[11, 0], [0, 1]], phi:[[-2, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{6}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{1}q_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{5}M_{6}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}M_{5}$, ${ }M_{5}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{5}$, ${ }M_{6}q_{1}q_{2}$, ${ }M_{4}q_{1}q_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{5}q_{1}q_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{1}^{2}$ ${}$ -4 3*t^2.036 + t^2.643 + 2*t^2.947 + t^3.357 + 2*t^3.661 + 7*t^4.071 + 2*t^4.375 + 3*t^4.679 + t^4.785 + 6*t^4.982 + t^5.286 + 3*t^5.393 + 6*t^5.696 + 3*t^5.893 - 4*t^6. + 13*t^6.107 + 2*t^6.304 + 4*t^6.411 + 3*t^6.607 + 6*t^6.714 + 3*t^6.821 - 2*t^6.911 + 14*t^7.018 + 3*t^7.321 + 7*t^7.428 - 2*t^7.625 + 14*t^7.732 + 9*t^7.929 - 12*t^8.036 + 22*t^8.143 + 2*t^8.339 + 8*t^8.446 + 5*t^8.643 + 9*t^8.75 + 4*t^8.84 + 7*t^8.857 - 14*t^8.947 - t^4.321/y - (3*t^6.357)/y + (3*t^7.071)/y - (2*t^7.268)/y + (2*t^7.375)/y + (3*t^7.679)/y + (6*t^7.982)/y + (3*t^8.286)/y - (3*t^8.393)/y + (2*t^8.589)/y + (6*t^8.696)/y + t^8.893/y - t^4.321*y - 3*t^6.357*y + 3*t^7.071*y - 2*t^7.268*y + 2*t^7.375*y + 3*t^7.679*y + 6*t^7.982*y + 3*t^8.286*y - 3*t^8.393*y + 2*t^8.589*y + 6*t^8.696*y + t^8.893*y g1^6*t^2.036 + (g1^2*t^2.036)/g2^2 + g1^10*g2^2*t^2.036 + t^2.643/g1^4 + t^2.947/(g1^11*g2) + (g2*t^2.947)/g1^7 + g1^4*t^3.357 + t^3.661/(g1^3*g2) + g1*g2*t^3.661 + 3*g1^12*t^4.071 + (g1^4*t^4.071)/g2^4 + (g1^8*t^4.071)/g2^2 + g1^16*g2^2*t^4.071 + g1^20*g2^4*t^4.071 + (g1^5*t^4.375)/g2 + g1^9*g2*t^4.375 + g1^2*t^4.679 + t^4.679/(g1^2*g2^2) + g1^6*g2^2*t^4.679 + g1^20*t^4.785 + t^4.982/(g1^9*g2^3) + (2*t^4.982)/(g1^5*g2) + (2*g2*t^4.982)/g1 + g1^3*g2^3*t^4.982 + t^5.286/g1^8 + g1^10*t^5.393 + (g1^6*t^5.393)/g2^2 + g1^14*g2^2*t^5.393 + t^5.696/(g1*g2^3) + (2*g1^3*t^5.696)/g2 + 2*g1^7*g2*t^5.696 + g1^11*g2^3*t^5.696 + t^5.893/g1^18 + t^5.893/(g1^22*g2^2) + (g2^2*t^5.893)/g1^14 - 2*t^6. - t^6./(g1^4*g2^2) - g1^4*g2^2*t^6. + 3*g1^18*t^6.107 + (g1^6*t^6.107)/g2^6 + (g1^10*t^6.107)/g2^4 + (3*g1^14*t^6.107)/g2^2 + 3*g1^22*g2^2*t^6.107 + g1^26*g2^4*t^6.107 + g1^30*g2^6*t^6.107 + t^6.304/(g1^7*g2) + (g2*t^6.304)/g1^3 + (g1^7*t^6.411)/g2^3 + (g1^11*t^6.411)/g2 + g1^15*g2*t^6.411 + g1^19*g2^3*t^6.411 + t^6.607/g1^10 + t^6.607/(g1^14*g2^2) + (g2^2*t^6.607)/g1^6 + 2*g1^8*t^6.714 + t^6.714/g2^4 + (g1^4*t^6.714)/g2^2 + g1^12*g2^2*t^6.714 + g1^16*g2^4*t^6.714 + g1^26*t^6.821 + (g1^22*t^6.821)/g2^2 + g1^30*g2^2*t^6.821 - t^6.911/(g1^17*g2) - (g2*t^6.911)/g1^13 + t^7.018/(g1^7*g2^5) + (2*t^7.018)/(g1^3*g2^3) + (4*g1*t^7.018)/g2 + 4*g1^5*g2*t^7.018 + 2*g1^9*g2^3*t^7.018 + g1^13*g2^5*t^7.018 + t^7.321/g1^2 + t^7.321/(g1^6*g2^2) + g1^2*g2^2*t^7.321 + 3*g1^16*t^7.428 + (g1^8*t^7.428)/g2^4 + (g1^12*t^7.428)/g2^2 + g1^20*g2^2*t^7.428 + g1^24*g2^4*t^7.428 - t^7.625/(g1^9*g2) - (g2*t^7.625)/g1^5 + (g1*t^7.732)/g2^5 + (2*g1^5*t^7.732)/g2^3 + (4*g1^9*t^7.732)/g2 + 4*g1^13*g2*t^7.732 + 2*g1^17*g2^3*t^7.732 + g1^21*g2^5*t^7.732 + (3*t^7.929)/g1^12 + t^7.929/(g1^20*g2^4) + (2*t^7.929)/(g1^16*g2^2) + (2*g2^2*t^7.929)/g1^8 + (g2^4*t^7.929)/g1^4 - 4*g1^6*t^8.036 - t^8.036/(g1^2*g2^4) - (3*g1^2*t^8.036)/g2^2 - 3*g1^10*g2^2*t^8.036 - g1^14*g2^4*t^8.036 + 6*g1^24*t^8.143 + (g1^8*t^8.143)/g2^8 + (g1^12*t^8.143)/g2^6 + (3*g1^16*t^8.143)/g2^4 + (3*g1^20*t^8.143)/g2^2 + 3*g1^28*g2^2*t^8.143 + 3*g1^32*g2^4*t^8.143 + g1^36*g2^6*t^8.143 + g1^40*g2^8*t^8.143 + t^8.339/(g1^5*g2^3) + g1^7*g2^3*t^8.339 + (g1^9*t^8.446)/g2^5 + (g1^13*t^8.446)/g2^3 + (2*g1^17*t^8.446)/g2 + 2*g1^21*g2*t^8.446 + g1^25*g2^3*t^8.446 + g1^29*g2^5*t^8.446 + t^8.643/g1^4 + t^8.643/(g1^12*g2^4) + t^8.643/(g1^8*g2^2) + g2^2*t^8.643 + g1^4*g2^4*t^8.643 + g1^14*t^8.75 + (g1^2*t^8.75)/g2^6 + (g1^6*t^8.75)/g2^4 + (2*g1^10*t^8.75)/g2^2 + 2*g1^18*g2^2*t^8.75 + g1^22*g2^4*t^8.75 + g1^26*g2^6*t^8.75 + t^8.84/(g1^33*g2^3) + t^8.84/(g1^29*g2) + (g2*t^8.84)/g1^25 + (g2^3*t^8.84)/g1^21 + 3*g1^32*t^8.857 + (g1^24*t^8.857)/g2^4 + (g1^28*t^8.857)/g2^2 + g1^36*g2^2*t^8.857 + g1^40*g2^4*t^8.857 - (2*t^8.947)/(g1^15*g2^3) - (5*t^8.947)/(g1^11*g2) - (5*g2*t^8.947)/g1^7 - (2*g2^3*t^8.947)/g1^3 - t^4.321/(g1^2*y) - (g1^4*t^6.357)/y - t^6.357/(g2^2*y) - (g1^8*g2^2*t^6.357)/y + (g1^12*t^7.071)/y + (g1^8*t^7.071)/(g2^2*y) + (g1^16*g2^2*t^7.071)/y - t^7.268/(g1^13*g2*y) - (g2*t^7.268)/(g1^9*y) + (g1^5*t^7.375)/(g2*y) + (g1^9*g2*t^7.375)/y + (g1^2*t^7.679)/y + t^7.679/(g1^2*g2^2*y) + (g1^6*g2^2*t^7.679)/y + t^7.982/(g1^9*g2^3*y) + (2*t^7.982)/(g1^5*g2*y) + (2*g2*t^7.982)/(g1*y) + (g1^3*g2^3*t^7.982)/y + t^8.286/(g1^8*y) + t^8.286/(g1^12*g2^2*y) + (g2^2*t^8.286)/(g1^4*y) - (g1^10*t^8.393)/y - (g1^2*t^8.393)/(g2^4*y) - (g1^18*g2^4*t^8.393)/y + t^8.589/(g1^15*g2*y) + (g2*t^8.589)/(g1^11*y) + t^8.696/(g1*g2^3*y) + (2*g1^3*t^8.696)/(g2*y) + (2*g1^7*g2*t^8.696)/y + (g1^11*g2^3*t^8.696)/y + t^8.893/(g1^18*y) - (t^4.321*y)/g1^2 - g1^4*t^6.357*y - (t^6.357*y)/g2^2 - g1^8*g2^2*t^6.357*y + g1^12*t^7.071*y + (g1^8*t^7.071*y)/g2^2 + g1^16*g2^2*t^7.071*y - (t^7.268*y)/(g1^13*g2) - (g2*t^7.268*y)/g1^9 + (g1^5*t^7.375*y)/g2 + g1^9*g2*t^7.375*y + g1^2*t^7.679*y + (t^7.679*y)/(g1^2*g2^2) + g1^6*g2^2*t^7.679*y + (t^7.982*y)/(g1^9*g2^3) + (2*t^7.982*y)/(g1^5*g2) + (2*g2*t^7.982*y)/g1 + g1^3*g2^3*t^7.982*y + (t^8.286*y)/g1^8 + (t^8.286*y)/(g1^12*g2^2) + (g2^2*t^8.286*y)/g1^4 - g1^10*t^8.393*y - (g1^2*t^8.393*y)/g2^4 - g1^18*g2^4*t^8.393*y + (t^8.589*y)/(g1^15*g2) + (g2*t^8.589*y)/g1^11 + (t^8.696*y)/(g1*g2^3) + (2*g1^3*t^8.696*y)/g2 + 2*g1^7*g2*t^8.696*y + g1^11*g2^3*t^8.696*y + (t^8.893*y)/g1^18


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
415 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ 0.6912 0.864 0.8 [M:[0.9777, 1.1199, 0.9825, 0.6799, 0.6751], q:[0.78, 0.4425], qb:[0.5799, 0.4376], phi:[0.44]] t^2.025 + t^2.04 + t^2.64 + t^2.933 + t^2.948 + t^3.36 + t^3.653 + t^3.667 + t^3.946 + t^4.05 + t^4.065 + 2*t^4.08 + t^4.372 + t^4.387 + t^4.665 + t^4.68 + t^4.799 + t^4.958 + 2*t^4.973 + t^4.987 + t^5.28 + t^5.385 + t^5.4 + t^5.678 + 2*t^5.693 + t^5.707 + t^5.866 + t^5.881 + t^5.895 + t^5.971 - 2*t^6. - t^4.32/y - t^4.32*y detail