Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6759 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{8}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{9}\phi_{1}q_{1}^{2}$ 0.73 0.9543 0.7649 [M:[0.8216, 1.0595, 1.1784, 0.7027, 0.8216, 1.0541, 0.7081, 0.7134, 0.7027], q:[0.4135, 0.7649], qb:[0.4081, 0.5324], phi:[0.4703]] [M:[[-12], [4], [12], [-20], [-12], [-30], [14], [48], [-20]], q:[[11], [1]], qb:[[-23], [19]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{9}$, ${ }M_{7}$, ${ }M_{8}$, ${ }M_{1}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{9}$, ${ }M_{9}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}M_{9}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{8}M_{9}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{7}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{1}M_{9}$, ${ }M_{5}M_{9}$, ${ }M_{1}M_{7}$, ${ }M_{5}M_{7}$, ${ }M_{1}M_{8}$, ${ }M_{5}M_{8}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{9}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{9}$, ${ }M_{2}M_{4}$, ${ }M_{6}M_{7}$, ${ }M_{2}M_{9}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{6}M_{8}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{8}$, ${ }M_{1}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{9}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}^{4}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{8}q_{2}\tilde{q}_{1}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$ ${}$ -2 2*t^2.108 + t^2.124 + t^2.14 + 2*t^2.465 + t^2.822 + t^3.162 + t^3.178 + t^3.519 + 3*t^4.216 + 3*t^4.232 + 4*t^4.249 + t^4.265 + t^4.281 + 4*t^4.573 + 2*t^4.589 + 3*t^4.605 + 5*t^4.93 + t^4.946 + t^4.962 + 2*t^5.27 + 5*t^5.287 + 2*t^5.303 + t^5.319 + 3*t^5.627 + 3*t^5.643 + t^5.659 + 2*t^5.984 - 2*t^6. - t^6.016 + 5*t^6.325 + 6*t^6.341 + 6*t^6.357 + 4*t^6.373 + 4*t^6.389 + t^6.405 + t^6.421 + 7*t^6.681 + 5*t^6.697 + 8*t^6.713 + 3*t^6.73 + 3*t^6.746 + 8*t^7.038 + 3*t^7.054 + 6*t^7.07 + t^7.086 + t^7.102 + 3*t^7.379 + 12*t^7.395 + 5*t^7.411 + 6*t^7.427 + 2*t^7.443 + t^7.459 + 5*t^7.735 + 9*t^7.751 + 5*t^7.768 + t^7.784 + t^7.8 + 5*t^8.092 - t^8.108 - 4*t^8.124 - 4*t^8.14 - t^8.156 + 7*t^8.433 + 12*t^8.449 + 6*t^8.465 + 4*t^8.481 + 7*t^8.497 + 4*t^8.513 + 4*t^8.529 + t^8.545 + t^8.561 + 11*t^8.789 + 10*t^8.806 + 8*t^8.822 + 7*t^8.838 + 10*t^8.854 + 3*t^8.87 + 3*t^8.886 - t^4.411/y - (2*t^6.519)/y - t^6.535/y - t^6.551/y - t^6.876/y + t^7.216/y + (2*t^7.232)/y + (3*t^7.249)/y + t^7.265/y + (3*t^7.573)/y + (2*t^7.589)/y + (2*t^7.605)/y + (3*t^7.93)/y + (2*t^7.946)/y + t^7.962/y + (3*t^8.27)/y + (6*t^8.287)/y + (4*t^8.303)/y + t^8.319/y + t^8.627/y + t^8.643/y - (2*t^8.659)/y - t^8.675/y - t^8.692/y + t^8.984/y - t^4.411*y - 2*t^6.519*y - t^6.535*y - t^6.551*y - t^6.876*y + t^7.216*y + 2*t^7.232*y + 3*t^7.249*y + t^7.265*y + 3*t^7.573*y + 2*t^7.589*y + 2*t^7.605*y + 3*t^7.93*y + 2*t^7.946*y + t^7.962*y + 3*t^8.27*y + 6*t^8.287*y + 4*t^8.303*y + t^8.319*y + t^8.627*y + t^8.643*y - 2*t^8.659*y - t^8.675*y - t^8.692*y + t^8.984*y (2*t^2.108)/g1^20 + g1^14*t^2.124 + g1^48*t^2.14 + (2*t^2.465)/g1^12 + t^2.822/g1^4 + t^3.162/g1^30 + g1^4*t^3.178 + t^3.519/g1^22 + (3*t^4.216)/g1^40 + (3*t^4.232)/g1^6 + 4*g1^28*t^4.249 + g1^62*t^4.265 + g1^96*t^4.281 + (4*t^4.573)/g1^32 + 2*g1^2*t^4.589 + 3*g1^36*t^4.605 + (5*t^4.93)/g1^24 + g1^10*t^4.946 + g1^44*t^4.962 + (2*t^5.27)/g1^50 + (5*t^5.287)/g1^16 + 2*g1^18*t^5.303 + g1^52*t^5.319 + (3*t^5.627)/g1^42 + (3*t^5.643)/g1^8 + g1^26*t^5.659 + (2*t^5.984)/g1^34 - 2*t^6. - g1^34*t^6.016 + (5*t^6.325)/g1^60 + (6*t^6.341)/g1^26 + 6*g1^8*t^6.357 + 4*g1^42*t^6.373 + 4*g1^76*t^6.389 + g1^110*t^6.405 + g1^144*t^6.421 + (7*t^6.681)/g1^52 + (5*t^6.697)/g1^18 + 8*g1^16*t^6.713 + 3*g1^50*t^6.73 + 3*g1^84*t^6.746 + (8*t^7.038)/g1^44 + (3*t^7.054)/g1^10 + 6*g1^24*t^7.07 + g1^58*t^7.086 + g1^92*t^7.102 + (3*t^7.379)/g1^70 + (12*t^7.395)/g1^36 + (5*t^7.411)/g1^2 + 6*g1^32*t^7.427 + 2*g1^66*t^7.443 + g1^100*t^7.459 + (5*t^7.735)/g1^62 + (9*t^7.751)/g1^28 + 5*g1^6*t^7.768 + g1^40*t^7.784 + g1^74*t^7.8 + (5*t^8.092)/g1^54 - t^8.108/g1^20 - 4*g1^14*t^8.124 - 4*g1^48*t^8.14 - g1^82*t^8.156 + (7*t^8.433)/g1^80 + (12*t^8.449)/g1^46 + (6*t^8.465)/g1^12 + 4*g1^22*t^8.481 + 7*g1^56*t^8.497 + 4*g1^90*t^8.513 + 4*g1^124*t^8.529 + g1^158*t^8.545 + g1^192*t^8.561 + (11*t^8.789)/g1^72 + (10*t^8.806)/g1^38 + (8*t^8.822)/g1^4 + 7*g1^30*t^8.838 + 10*g1^64*t^8.854 + 3*g1^98*t^8.87 + 3*g1^132*t^8.886 - t^4.411/(g1^2*y) - (2*t^6.519)/(g1^22*y) - (g1^12*t^6.535)/y - (g1^46*t^6.551)/y - t^6.876/(g1^14*y) + t^7.216/(g1^40*y) + (2*t^7.232)/(g1^6*y) + (3*g1^28*t^7.249)/y + (g1^62*t^7.265)/y + (3*t^7.573)/(g1^32*y) + (2*g1^2*t^7.589)/y + (2*g1^36*t^7.605)/y + (3*t^7.93)/(g1^24*y) + (2*g1^10*t^7.946)/y + (g1^44*t^7.962)/y + (3*t^8.27)/(g1^50*y) + (6*t^8.287)/(g1^16*y) + (4*g1^18*t^8.303)/y + (g1^52*t^8.319)/y + t^8.627/(g1^42*y) + t^8.643/(g1^8*y) - (2*g1^26*t^8.659)/y - (g1^60*t^8.675)/y - (g1^94*t^8.692)/y + t^8.984/(g1^34*y) - (t^4.411*y)/g1^2 - (2*t^6.519*y)/g1^22 - g1^12*t^6.535*y - g1^46*t^6.551*y - (t^6.876*y)/g1^14 + (t^7.216*y)/g1^40 + (2*t^7.232*y)/g1^6 + 3*g1^28*t^7.249*y + g1^62*t^7.265*y + (3*t^7.573*y)/g1^32 + 2*g1^2*t^7.589*y + 2*g1^36*t^7.605*y + (3*t^7.93*y)/g1^24 + 2*g1^10*t^7.946*y + g1^44*t^7.962*y + (3*t^8.27*y)/g1^50 + (6*t^8.287*y)/g1^16 + 4*g1^18*t^8.303*y + g1^52*t^8.319*y + (t^8.627*y)/g1^42 + (t^8.643*y)/g1^8 - 2*g1^26*t^8.659*y - g1^60*t^8.675*y - g1^94*t^8.692*y + (t^8.984*y)/g1^34


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
5207 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{8}\phi_{1}\tilde{q}_{1}^{2}$ 0.7095 0.9154 0.7751 [M:[0.8231, 1.059, 1.1769, 0.7051, 0.8231, 1.0576, 0.7064, 0.7078], q:[0.4122, 0.7647], qb:[0.4109, 0.5302], phi:[0.4705]] t^2.115 + t^2.119 + t^2.123 + 2*t^2.469 + t^2.823 + t^3.173 + t^3.177 + t^3.527 + t^3.885 + t^4.231 + 2*t^4.235 + 3*t^4.239 + t^4.243 + t^4.247 + 2*t^4.584 + 2*t^4.588 + 3*t^4.593 + 4*t^4.938 + t^4.942 + t^4.946 + t^5.288 + 4*t^5.292 + 2*t^5.296 + t^5.3 + 2*t^5.642 + 3*t^5.646 + t^5.65 + 2*t^5.996 - t^6. - t^4.412/y - t^4.412*y detail