Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6758 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{8}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{9}$ 0.715 0.9245 0.7734 [M:[0.8217, 1.0594, 1.1783, 0.7029, 0.8217, 1.0543, 0.708, 0.7131, 0.9406], q:[0.4134, 0.7649], qb:[0.4083, 0.5323], phi:[0.4703]] [M:[[-12], [4], [12], [-20], [-12], [-30], [14], [48], [-4]], q:[[11], [1]], qb:[[-23], [19]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{7}$, ${ }M_{8}$, ${ }M_{1}$, ${ }M_{5}$, ${ }M_{9}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{4}M_{8}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{7}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{1}M_{7}$, ${ }M_{5}M_{7}$, ${ }M_{1}M_{8}$, ${ }M_{5}M_{8}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{9}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{7}M_{9}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{8}M_{9}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{1}M_{9}$, ${ }M_{5}M_{9}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}M_{8}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{9}^{2}$, ${ }M_{9}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{8}q_{2}\tilde{q}_{1}$, ${ }M_{6}M_{9}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$ ${}M_{4}\phi_{1}q_{1}^{2}$ -2 t^2.109 + t^2.124 + t^2.139 + 2*t^2.465 + 2*t^2.822 + t^3.163 + t^3.519 + t^3.891 + t^4.217 + 2*t^4.233 + 3*t^4.248 + t^4.263 + t^4.279 + 2*t^4.574 + 2*t^4.589 + 3*t^4.605 + 5*t^4.93 + 2*t^4.946 + 2*t^4.961 + t^5.271 + 5*t^5.287 + t^5.302 + 2*t^5.628 + 3*t^5.643 + t^5.659 + 3*t^5.985 - 2*t^6. + t^6.031 + 2*t^6.326 + 3*t^6.341 + 3*t^6.357 + 3*t^6.372 + 3*t^6.387 + t^6.403 + t^6.418 + 3*t^6.682 + 2*t^6.698 + 7*t^6.713 + 3*t^6.729 + 3*t^6.744 + 4*t^7.039 + 5*t^7.054 + 8*t^7.07 + 2*t^7.085 + 2*t^7.101 + t^7.38 + 8*t^7.395 + 4*t^7.411 + 5*t^7.426 + t^7.442 + 2*t^7.737 + 9*t^7.752 + 4*t^7.767 + t^7.783 + t^7.798 + 4*t^8.093 + 3*t^8.109 - t^8.124 - 2*t^8.139 + t^8.17 + 2*t^8.434 + 7*t^8.45 + t^8.465 + t^8.481 + 5*t^8.496 + 3*t^8.511 + 3*t^8.527 + t^8.542 + t^8.558 + 4*t^8.791 + 6*t^8.806 - t^8.822 + 4*t^8.837 + 9*t^8.853 + 3*t^8.868 + 3*t^8.883 - t^4.411/y - t^6.519/y - t^6.535/y - t^6.55/y - t^6.876/y + (2*t^7.248)/y + t^7.263/y + t^7.574/y + (3*t^7.589)/y + (2*t^7.605)/y + (3*t^7.93)/y + (3*t^7.946)/y + (2*t^7.961)/y + (2*t^8.271)/y + (6*t^8.287)/y + (2*t^8.302)/y + (2*t^8.628)/y + t^8.643/y - t^8.659/y - t^8.674/y - t^8.69/y + (3*t^8.985)/y - t^4.411*y - t^6.519*y - t^6.535*y - t^6.55*y - t^6.876*y + 2*t^7.248*y + t^7.263*y + t^7.574*y + 3*t^7.589*y + 2*t^7.605*y + 3*t^7.93*y + 3*t^7.946*y + 2*t^7.961*y + 2*t^8.271*y + 6*t^8.287*y + 2*t^8.302*y + 2*t^8.628*y + t^8.643*y - t^8.659*y - t^8.674*y - t^8.69*y + 3*t^8.985*y t^2.109/g1^20 + g1^14*t^2.124 + g1^48*t^2.139 + (2*t^2.465)/g1^12 + (2*t^2.822)/g1^4 + t^3.163/g1^30 + t^3.519/g1^22 + g1^20*t^3.891 + t^4.217/g1^40 + (2*t^4.233)/g1^6 + 3*g1^28*t^4.248 + g1^62*t^4.263 + g1^96*t^4.279 + (2*t^4.574)/g1^32 + 2*g1^2*t^4.589 + 3*g1^36*t^4.605 + (5*t^4.93)/g1^24 + 2*g1^10*t^4.946 + 2*g1^44*t^4.961 + t^5.271/g1^50 + (5*t^5.287)/g1^16 + g1^18*t^5.302 + (2*t^5.628)/g1^42 + (3*t^5.643)/g1^8 + g1^26*t^5.659 + (3*t^5.985)/g1^34 - 2*t^6. + g1^68*t^6.031 + (2*t^6.326)/g1^60 + (3*t^6.341)/g1^26 + 3*g1^8*t^6.357 + 3*g1^42*t^6.372 + 3*g1^76*t^6.387 + g1^110*t^6.403 + g1^144*t^6.418 + (3*t^6.682)/g1^52 + (2*t^6.698)/g1^18 + 7*g1^16*t^6.713 + 3*g1^50*t^6.729 + 3*g1^84*t^6.744 + (4*t^7.039)/g1^44 + (5*t^7.054)/g1^10 + 8*g1^24*t^7.07 + 2*g1^58*t^7.085 + 2*g1^92*t^7.101 + t^7.38/g1^70 + (8*t^7.395)/g1^36 + (4*t^7.411)/g1^2 + 5*g1^32*t^7.426 + g1^66*t^7.442 + (2*t^7.737)/g1^62 + (9*t^7.752)/g1^28 + 4*g1^6*t^7.767 + g1^40*t^7.783 + g1^74*t^7.798 + (4*t^8.093)/g1^54 + (3*t^8.109)/g1^20 - g1^14*t^8.124 - 2*g1^48*t^8.139 + g1^116*t^8.17 + (2*t^8.434)/g1^80 + (7*t^8.45)/g1^46 + t^8.465/g1^12 + g1^22*t^8.481 + 5*g1^56*t^8.496 + 3*g1^90*t^8.511 + 3*g1^124*t^8.527 + g1^158*t^8.542 + g1^192*t^8.558 + (4*t^8.791)/g1^72 + (6*t^8.806)/g1^38 - t^8.822/g1^4 + 4*g1^30*t^8.837 + 9*g1^64*t^8.853 + 3*g1^98*t^8.868 + 3*g1^132*t^8.883 - t^4.411/(g1^2*y) - t^6.519/(g1^22*y) - (g1^12*t^6.535)/y - (g1^46*t^6.55)/y - t^6.876/(g1^14*y) + (2*g1^28*t^7.248)/y + (g1^62*t^7.263)/y + t^7.574/(g1^32*y) + (3*g1^2*t^7.589)/y + (2*g1^36*t^7.605)/y + (3*t^7.93)/(g1^24*y) + (3*g1^10*t^7.946)/y + (2*g1^44*t^7.961)/y + (2*t^8.271)/(g1^50*y) + (6*t^8.287)/(g1^16*y) + (2*g1^18*t^8.302)/y + (2*t^8.628)/(g1^42*y) + t^8.643/(g1^8*y) - (g1^26*t^8.659)/y - (g1^60*t^8.674)/y - (g1^94*t^8.69)/y + (3*t^8.985)/(g1^34*y) - (t^4.411*y)/g1^2 - (t^6.519*y)/g1^22 - g1^12*t^6.535*y - g1^46*t^6.55*y - (t^6.876*y)/g1^14 + 2*g1^28*t^7.248*y + g1^62*t^7.263*y + (t^7.574*y)/g1^32 + 3*g1^2*t^7.589*y + 2*g1^36*t^7.605*y + (3*t^7.93*y)/g1^24 + 3*g1^10*t^7.946*y + 2*g1^44*t^7.961*y + (2*t^8.271*y)/g1^50 + (6*t^8.287*y)/g1^16 + 2*g1^18*t^8.302*y + (2*t^8.628*y)/g1^42 + (t^8.643*y)/g1^8 - g1^26*t^8.659*y - g1^60*t^8.674*y - g1^94*t^8.69*y + (3*t^8.985*y)/g1^34


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
5207 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{8}\phi_{1}\tilde{q}_{1}^{2}$ 0.7095 0.9154 0.7751 [M:[0.8231, 1.059, 1.1769, 0.7051, 0.8231, 1.0576, 0.7064, 0.7078], q:[0.4122, 0.7647], qb:[0.4109, 0.5302], phi:[0.4705]] t^2.115 + t^2.119 + t^2.123 + 2*t^2.469 + t^2.823 + t^3.173 + t^3.177 + t^3.527 + t^3.885 + t^4.231 + 2*t^4.235 + 3*t^4.239 + t^4.243 + t^4.247 + 2*t^4.584 + 2*t^4.588 + 3*t^4.593 + 4*t^4.938 + t^4.942 + t^4.946 + t^5.288 + 4*t^5.292 + 2*t^5.296 + t^5.3 + 2*t^5.642 + 3*t^5.646 + t^5.65 + 2*t^5.996 - t^6. - t^4.412/y - t^4.412*y detail