Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6690 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{3}X_{1}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}M_{8}$ + ${ }M_{9}\phi_{1}\tilde{q}_{1}^{2}$ 0.7068 0.9122 0.7747 [X:[1.4975], M:[0.8586, 1.2146, 0.5025, 0.7854, 0.8586, 0.8586, 0.7854, 0.7854, 0.7121], q:[0.3561, 0.7854], qb:[0.4293, 0.7121], phi:[0.4293]] [X:[[7]], M:[[-4], [-1], [-7], [1], [-4], [-4], [1], [1], [6]], q:[[3], [1]], qb:[[-2], [6]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{9}$, ${ }M_{4}$, ${ }M_{7}$, ${ }M_{8}$, ${ }M_{1}$, ${ }M_{5}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{9}^{2}$, ${ }M_{4}M_{9}$, ${ }M_{7}M_{9}$, ${ }M_{8}M_{9}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{1}M_{9}$, ${ }M_{5}M_{9}$, ${ }M_{6}M_{9}$, ${ }M_{9}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{5}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{1}M_{8}$, ${ }M_{5}M_{8}$, ${ }M_{6}M_{8}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{9}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }M_{8}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$ ${}$ -4 t^2.136 + 3*t^2.356 + 4*t^2.576 + t^3.205 + t^4.273 + 5*t^4.492 + 11*t^4.712 + 11*t^4.932 + 9*t^5.151 + t^5.341 + 4*t^5.561 + 3*t^5.78 - 4*t^6. - 4*t^6.22 + 2*t^6.409 - t^6.439 + 5*t^6.629 + 13*t^6.849 + 25*t^7.068 + 28*t^7.288 + t^7.477 + 22*t^7.508 + 6*t^7.697 + 17*t^7.727 + 10*t^7.917 + 2*t^8.136 - 15*t^8.356 + 2*t^8.546 - 26*t^8.576 + 9*t^8.765 - 16*t^8.795 + 16*t^8.985 - t^4.288/y - t^6.424/y - (2*t^6.644)/y - (4*t^6.864)/y + (3*t^7.492)/y + (11*t^7.712)/y + (14*t^7.932)/y + (7*t^8.151)/y + t^8.341/y + (2*t^8.561)/y + (2*t^8.78)/y - t^4.288*y - t^6.424*y - 2*t^6.644*y - 4*t^6.864*y + 3*t^7.492*y + 11*t^7.712*y + 14*t^7.932*y + 7*t^8.151*y + t^8.341*y + 2*t^8.561*y + 2*t^8.78*y g1^6*t^2.136 + 3*g1*t^2.356 + (4*t^2.576)/g1^4 + g1^9*t^3.205 + g1^12*t^4.273 + 5*g1^7*t^4.492 + 11*g1^2*t^4.712 + (11*t^4.932)/g1^3 + (9*t^5.151)/g1^8 + g1^15*t^5.341 + 4*g1^10*t^5.561 + 3*g1^5*t^5.78 - 4*t^6. - (4*t^6.22)/g1^5 + 2*g1^18*t^6.409 - t^6.439/g1^10 + 5*g1^13*t^6.629 + 13*g1^8*t^6.849 + 25*g1^3*t^7.068 + (28*t^7.288)/g1^2 + g1^21*t^7.477 + (22*t^7.508)/g1^7 + 6*g1^16*t^7.697 + (17*t^7.727)/g1^12 + 10*g1^11*t^7.917 + 2*g1^6*t^8.136 - 15*g1*t^8.356 + 2*g1^24*t^8.546 - (26*t^8.576)/g1^4 + 9*g1^19*t^8.765 - (16*t^8.795)/g1^9 + 16*g1^14*t^8.985 - t^4.288/(g1^2*y) - (g1^4*t^6.424)/y - (2*t^6.644)/(g1*y) - (4*t^6.864)/(g1^6*y) + (3*g1^7*t^7.492)/y + (11*g1^2*t^7.712)/y + (14*t^7.932)/(g1^3*y) + (7*t^8.151)/(g1^8*y) + (g1^15*t^8.341)/y + (2*g1^10*t^8.561)/y + (2*g1^5*t^8.78)/y - (t^4.288*y)/g1^2 - g1^4*t^6.424*y - (2*t^6.644*y)/g1 - (4*t^6.864*y)/g1^6 + 3*g1^7*t^7.492*y + 11*g1^2*t^7.712*y + (14*t^7.932*y)/g1^3 + (7*t^8.151*y)/g1^8 + g1^15*t^8.341*y + 2*g1^10*t^8.561*y + 2*g1^5*t^8.78*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
5113 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{3}X_{1}$ + ${ }M_{6}\phi_{1}q_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}M_{8}$ 0.6866 0.8741 0.7855 [X:[1.5091], M:[0.852, 1.213, 0.4909, 0.787, 0.852, 0.852, 0.787, 0.787], q:[0.361, 0.787], qb:[0.426, 0.7221], phi:[0.426]] 3*t^2.361 + 4*t^2.556 + t^3.249 + t^3.834 + 2*t^4.527 + 7*t^4.722 + 11*t^4.917 + 9*t^5.112 + 4*t^5.61 + 3*t^5.805 - 4*t^6. - t^4.278/y - t^4.278*y detail