Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
668 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ 0.7089 0.895 0.7921 [M:[0.9907, 1.1181, 0.9777, 0.6772, 0.7731, 0.6902], q:[0.7795, 0.4345], qb:[0.5749, 0.4474], phi:[0.4409]] [M:[[-7, 1], [4, 0], [-11, -1], [6, 0], [-1, -1], [10, 2]], q:[[1, 0], [-4, -1]], qb:[[11, 0], [0, 1]], phi:[[-2, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{6}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{5}$, ${ }M_{4}q_{1}q_{2}$, ${ }M_{6}q_{1}q_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}^{2}$ ${}$ -2 t^2.032 + t^2.071 + t^2.319 + t^2.646 + t^2.933 + t^2.972 + t^3.354 + t^3.642 + t^4.007 + 2*t^4.063 + t^4.102 + t^4.141 + 2*t^4.351 + 2*t^4.39 + t^4.638 + t^4.677 + t^4.716 + t^4.772 + 2*t^4.965 + 2*t^5.004 + t^5.042 + t^5.252 + 2*t^5.291 + t^5.386 + t^5.425 + 2*t^5.674 + t^5.712 + t^5.866 + t^5.905 + t^5.944 - 2*t^6. + t^6.078 + 2*t^6.095 + 2*t^6.134 + t^6.173 + t^6.212 + t^6.288 + t^6.326 + 2*t^6.382 + 2*t^6.421 + 2*t^6.46 + t^6.575 + t^6.653 + 2*t^6.67 + 3*t^6.709 + t^6.748 + t^6.787 + t^6.804 + t^6.843 - t^6.901 + t^6.958 + t^6.979 + 3*t^6.996 + 3*t^7.035 + 2*t^7.074 + t^7.091 + t^7.113 + 2*t^7.284 + 2*t^7.323 + 2*t^7.362 + 2*t^7.418 + t^7.457 + t^7.495 + t^7.571 + t^7.61 + 3*t^7.705 + 2*t^7.744 + t^7.783 + t^7.898 + 2*t^7.937 + 2*t^7.976 + t^7.993 + 2*t^8.014 - 3*t^8.032 - 2*t^8.071 + 3*t^8.127 + t^8.148 + 2*t^8.165 + t^8.185 + 2*t^8.204 + t^8.224 + t^8.243 + t^8.263 + t^8.282 - 3*t^8.319 + 2*t^8.397 + 3*t^8.414 + 2*t^8.453 + 2*t^8.492 + 2*t^8.531 + t^8.607 + 2*t^8.702 + t^8.723 + 2*t^8.74 + 4*t^8.779 + t^8.799 + t^8.818 + 2*t^8.835 + t^8.838 + t^8.857 + t^8.874 + t^8.877 + t^8.913 + t^8.916 - 4*t^8.933 - 4*t^8.972 + 2*t^8.989 - t^4.323/y - t^6.354/y - t^6.393/y - t^6.642/y + t^7.102/y - t^7.256/y - t^7.295/y + (2*t^7.351)/y + (2*t^7.39)/y + t^7.677/y + t^7.716/y + (2*t^7.965)/y + (3*t^8.004)/y + t^8.042/y + (2*t^8.252)/y + (2*t^8.291)/y - t^8.464/y + t^8.579/y + t^8.618/y + t^8.674/y + t^8.905/y - t^4.323*y - t^6.354*y - t^6.393*y - t^6.642*y + t^7.102*y - t^7.256*y - t^7.295*y + 2*t^7.351*y + 2*t^7.39*y + t^7.677*y + t^7.716*y + 2*t^7.965*y + 3*t^8.004*y + t^8.042*y + 2*t^8.252*y + 2*t^8.291*y - t^8.464*y + t^8.579*y + t^8.618*y + t^8.674*y + t^8.905*y g1^6*t^2.032 + g1^10*g2^2*t^2.071 + t^2.319/(g1*g2) + t^2.646/g1^4 + t^2.933/(g1^11*g2) + (g2*t^2.972)/g1^7 + g1^4*t^3.354 + t^3.642/(g1^3*g2) + (g2^2*t^4.007)/g1^2 + 2*g1^12*t^4.063 + g1^16*g2^2*t^4.102 + g1^20*g2^4*t^4.141 + (2*g1^5*t^4.351)/g2 + 2*g1^9*g2*t^4.39 + t^4.638/(g1^2*g2^2) + g1^2*t^4.677 + g1^6*g2^2*t^4.716 + g1^20*t^4.772 + (2*t^4.965)/(g1^5*g2) + (2*g2*t^5.004)/g1 + g1^3*g2^3*t^5.042 + t^5.252/(g1^12*g2^2) + (2*t^5.291)/g1^8 + g1^10*t^5.386 + g1^14*g2^2*t^5.425 + (2*g1^3*t^5.674)/g2 + g1^7*g2*t^5.712 + t^5.866/(g1^22*g2^2) + t^5.905/g1^18 + (g2^2*t^5.944)/g1^14 - 2*t^6. + g1^8*g2^4*t^6.078 + 2*g1^18*t^6.095 + 2*g1^22*g2^2*t^6.134 + g1^26*g2^4*t^6.173 + g1^30*g2^6*t^6.212 + t^6.288/(g1^7*g2) + (g2*t^6.326)/g1^3 + (2*g1^11*t^6.382)/g2 + 2*g1^15*g2*t^6.421 + 2*g1^19*g2^3*t^6.46 + t^6.575/(g1^14*g2^2) + (g2^2*t^6.653)/g1^6 + (2*g1^4*t^6.67)/g2^2 + 3*g1^8*t^6.709 + g1^12*g2^2*t^6.748 + g1^16*g2^4*t^6.787 + g1^26*t^6.804 + g1^30*g2^2*t^6.843 - t^6.901/(g1^17*g2) + t^6.958/(g1^3*g2^3) + (g2^3*t^6.979)/g1^9 + (3*g1*t^6.996)/g2 + 3*g1^5*g2*t^7.035 + 2*g1^9*g2^3*t^7.074 + (g1^19*t^7.091)/g2 + g1^13*g2^5*t^7.113 + (2*t^7.284)/(g1^6*g2^2) + (2*t^7.323)/g1^2 + 2*g1^2*g2^2*t^7.362 + 2*g1^16*t^7.418 + g1^20*g2^2*t^7.457 + g1^24*g2^4*t^7.495 + t^7.571/(g1^13*g2^3) + t^7.61/(g1^9*g2) + (3*g1^9*t^7.705)/g2 + 2*g1^13*g2*t^7.744 + g1^17*g2^3*t^7.783 + t^7.898/(g1^16*g2^2) + (2*t^7.937)/g1^12 + (2*g2^2*t^7.976)/g1^8 + (g1^2*t^7.993)/g2^2 + (2*g2^4*t^8.014)/g1^4 - 3*g1^6*t^8.032 - 2*g1^10*g2^2*t^8.071 + 3*g1^24*t^8.127 + g1^18*g2^6*t^8.148 + 2*g1^28*g2^2*t^8.165 + t^8.185/(g1^23*g2^3) + 2*g1^32*g2^4*t^8.204 + t^8.224/(g1^19*g2) + g1^36*g2^6*t^8.243 + (g2*t^8.263)/g1^15 + g1^40*g2^8*t^8.282 - (3*t^8.319)/(g1*g2) + 2*g1^7*g2^3*t^8.397 + (3*g1^17*t^8.414)/g2 + 2*g1^21*g2*t^8.453 + 2*g1^25*g2^3*t^8.492 + 2*g1^29*g2^5*t^8.531 + t^8.607/(g1^8*g2^2) + (2*g1^10*t^8.702)/g2^2 + g1^4*g2^4*t^8.723 + 2*g1^14*t^8.74 + 4*g1^18*g2^2*t^8.779 + t^8.799/(g1^33*g2^3) + g1^22*g2^4*t^8.818 + 2*g1^32*t^8.835 + t^8.838/(g1^29*g2) + g1^26*g2^6*t^8.857 + g1^36*g2^2*t^8.874 + (g2*t^8.877)/g1^25 + g1^40*g2^4*t^8.913 + (g2^3*t^8.916)/g1^21 - (4*t^8.933)/(g1^11*g2) - (4*g2*t^8.972)/g1^7 + (2*g1^3*t^8.989)/g2^3 - t^4.323/(g1^2*y) - (g1^4*t^6.354)/y - (g1^8*g2^2*t^6.393)/y - t^6.642/(g1^3*g2*y) + (g1^16*g2^2*t^7.102)/y - t^7.256/(g1^13*g2*y) - (g2*t^7.295)/(g1^9*y) + (2*g1^5*t^7.351)/(g2*y) + (2*g1^9*g2*t^7.39)/y + (g1^2*t^7.677)/y + (g1^6*g2^2*t^7.716)/y + (2*t^7.965)/(g1^5*g2*y) + (3*g2*t^8.004)/(g1*y) + (g1^3*g2^3*t^8.042)/y + (2*t^8.252)/(g1^12*g2^2*y) + (2*t^8.291)/(g1^8*y) - (g1^18*g2^4*t^8.464)/y + t^8.579/(g1^15*g2*y) + (g2*t^8.618)/(g1^11*y) + (g1^3*t^8.674)/(g2*y) + t^8.905/(g1^18*y) - (t^4.323*y)/g1^2 - g1^4*t^6.354*y - g1^8*g2^2*t^6.393*y - (t^6.642*y)/(g1^3*g2) + g1^16*g2^2*t^7.102*y - (t^7.256*y)/(g1^13*g2) - (g2*t^7.295*y)/g1^9 + (2*g1^5*t^7.351*y)/g2 + 2*g1^9*g2*t^7.39*y + g1^2*t^7.677*y + g1^6*g2^2*t^7.716*y + (2*t^7.965*y)/(g1^5*g2) + (3*g2*t^8.004*y)/g1 + g1^3*g2^3*t^8.042*y + (2*t^8.252*y)/(g1^12*g2^2) + (2*t^8.291*y)/g1^8 - g1^18*g2^4*t^8.464*y + (t^8.579*y)/(g1^15*g2) + (g2*t^8.618*y)/g1^11 + (g1^3*t^8.674*y)/g2 + (t^8.905*y)/g1^18


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
412 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ 0.6883 0.8554 0.8047 [M:[0.9936, 1.1195, 0.9686, 0.6793, 0.7674], q:[0.7799, 0.4277], qb:[0.5787, 0.4528], phi:[0.4402]] t^2.038 + t^2.302 + t^2.641 + t^2.906 + t^2.981 + t^3.359 + t^3.623 + t^3.887 + t^4.037 + 2*t^4.076 + 2*t^4.34 + t^4.415 + t^4.604 + t^4.679 + t^4.793 + 2*t^4.944 + t^5.019 + t^5.208 + 2*t^5.283 + t^5.396 + 2*t^5.661 + t^5.811 + t^5.886 + t^5.925 + t^5.962 - 2*t^6. - t^4.321/y - t^4.321*y detail