Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6675 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{7}q_{1}\tilde{q}_{2}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ + ${ }M_{9}\phi_{1}q_{2}\tilde{q}_{1}$ 0.7304 0.9555 0.7644 [M:[1.0734, 0.8128, 1.0569, 0.8294, 1.1706, 0.6825, 0.7156, 0.7156, 0.6991], q:[0.5202, 0.4064], qb:[0.423, 0.7642], phi:[0.4716]] [M:[[-30], [22], [4], [-12], [12], [48], [-20], [-20], [14]], q:[[19], [11]], qb:[[-23], [1]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{9}$, ${ }M_{7}$, ${ }M_{8}$, ${ }M_{2}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{5}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{9}$, ${ }M_{6}M_{7}$, ${ }M_{6}M_{8}$, ${ }M_{9}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{7}M_{9}$, ${ }M_{8}M_{9}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{7}^{2}$, ${ }M_{7}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{2}M_{9}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{2}M_{8}$, ${ }M_{4}M_{9}$, ${ }M_{4}M_{7}$, ${ }M_{4}M_{8}$, ${ }M_{2}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{9}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{9}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{7}$, ${ }M_{3}M_{8}$, ${ }M_{1}M_{9}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{1}M_{8}$, ${ }M_{5}M_{6}$, ${ }M_{2}M_{3}$, ${ }M_{5}M_{9}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{7}$, ${ }M_{5}M_{8}$, ${ }\phi_{1}^{4}$ ${}$ -1 t^2.048 + t^2.097 + 2*t^2.147 + t^2.438 + t^2.488 + t^2.829 + t^3.171 + t^3.22 + t^3.512 + t^4.095 + t^4.145 + 4*t^4.194 + 3*t^4.244 + 3*t^4.294 + t^4.486 + 3*t^4.536 + 3*t^4.585 + 2*t^4.635 + 2*t^4.877 + 2*t^4.927 + 3*t^4.976 + t^5.218 + 3*t^5.268 + 4*t^5.317 + 2*t^5.367 + t^5.56 + 2*t^5.609 + 4*t^5.659 - t^6. + t^6.143 + t^6.192 + 4*t^6.242 + 4*t^6.292 + 7*t^6.341 + 5*t^6.391 + 5*t^6.44 + t^6.534 + 3*t^6.583 + 6*t^6.633 + 8*t^6.683 + 5*t^6.732 + 3*t^6.782 + 2*t^6.925 + 4*t^6.974 + 7*t^7.024 + 3*t^7.073 + 3*t^7.123 + t^7.266 + 4*t^7.315 + 7*t^7.365 + 7*t^7.415 + 7*t^7.464 + 3*t^7.514 + t^7.607 + 2*t^7.657 + 6*t^7.706 + 6*t^7.756 + 6*t^7.806 - 2*t^8.097 - 3*t^8.147 + t^8.19 + t^8.24 + 4*t^8.29 + 4*t^8.339 + 8*t^8.389 + 4*t^8.438 + 10*t^8.488 + 7*t^8.538 + t^8.581 + 7*t^8.587 + 3*t^8.631 + 6*t^8.681 + 11*t^8.73 + 11*t^8.78 + 9*t^8.829 + 7*t^8.879 + 4*t^8.929 + 2*t^8.972 - t^4.415/y - t^6.462/y - t^6.512/y - (2*t^6.562)/y - t^6.853/y + t^7.145/y + (3*t^7.194)/y + (2*t^7.244)/y + t^7.294/y + t^7.486/y + (2*t^7.536)/y + (3*t^7.585)/y + t^7.635/y + t^7.877/y + (2*t^7.927)/y + (3*t^7.976)/y + t^8.218/y + (5*t^8.268)/y + (5*t^8.317)/y + (3*t^8.367)/y - t^8.51/y - t^8.609/y + (2*t^8.659)/y - (2*t^8.708)/y - t^8.901/y - t^4.415*y - t^6.462*y - t^6.512*y - 2*t^6.562*y - t^6.853*y + t^7.145*y + 3*t^7.194*y + 2*t^7.244*y + t^7.294*y + t^7.486*y + 2*t^7.536*y + 3*t^7.585*y + t^7.635*y + t^7.877*y + 2*t^7.927*y + 3*t^7.976*y + t^8.218*y + 5*t^8.268*y + 5*t^8.317*y + 3*t^8.367*y - t^8.51*y - t^8.609*y + 2*t^8.659*y - 2*t^8.708*y - t^8.901*y g1^48*t^2.048 + g1^14*t^2.097 + (2*t^2.147)/g1^20 + g1^22*t^2.438 + t^2.488/g1^12 + t^2.829/g1^4 + g1^4*t^3.171 + t^3.22/g1^30 + g1^12*t^3.512 + g1^96*t^4.095 + g1^62*t^4.145 + 4*g1^28*t^4.194 + (3*t^4.244)/g1^6 + (3*t^4.294)/g1^40 + g1^70*t^4.486 + 3*g1^36*t^4.536 + 3*g1^2*t^4.585 + (2*t^4.635)/g1^32 + 2*g1^44*t^4.877 + 2*g1^10*t^4.927 + (3*t^4.976)/g1^24 + g1^52*t^5.218 + 3*g1^18*t^5.268 + (4*t^5.317)/g1^16 + (2*t^5.367)/g1^50 + g1^60*t^5.56 + 2*g1^26*t^5.609 + (4*t^5.659)/g1^8 - t^6. + g1^144*t^6.143 + g1^110*t^6.192 + 4*g1^76*t^6.242 + 4*g1^42*t^6.292 + 7*g1^8*t^6.341 + (5*t^6.391)/g1^26 + (5*t^6.44)/g1^60 + g1^118*t^6.534 + 3*g1^84*t^6.583 + 6*g1^50*t^6.633 + 8*g1^16*t^6.683 + (5*t^6.732)/g1^18 + (3*t^6.782)/g1^52 + 2*g1^92*t^6.925 + 4*g1^58*t^6.974 + 7*g1^24*t^7.024 + (3*t^7.073)/g1^10 + (3*t^7.123)/g1^44 + g1^100*t^7.266 + 4*g1^66*t^7.315 + 7*g1^32*t^7.365 + (7*t^7.415)/g1^2 + (7*t^7.464)/g1^36 + (3*t^7.514)/g1^70 + g1^108*t^7.607 + 2*g1^74*t^7.657 + 6*g1^40*t^7.706 + 6*g1^6*t^7.756 + (6*t^7.806)/g1^28 - 2*g1^14*t^8.097 - (3*t^8.147)/g1^20 + g1^192*t^8.19 + g1^158*t^8.24 + 4*g1^124*t^8.29 + 4*g1^90*t^8.339 + 8*g1^56*t^8.389 + 4*g1^22*t^8.438 + (10*t^8.488)/g1^12 + (7*t^8.538)/g1^46 + g1^166*t^8.581 + (7*t^8.587)/g1^80 + 3*g1^132*t^8.631 + 6*g1^98*t^8.681 + 11*g1^64*t^8.73 + 11*g1^30*t^8.78 + (9*t^8.829)/g1^4 + (7*t^8.879)/g1^38 + (4*t^8.929)/g1^72 + 2*g1^140*t^8.972 - t^4.415/(g1^2*y) - (g1^46*t^6.462)/y - (g1^12*t^6.512)/y - (2*t^6.562)/(g1^22*y) - (g1^20*t^6.853)/y + (g1^62*t^7.145)/y + (3*g1^28*t^7.194)/y + (2*t^7.244)/(g1^6*y) + t^7.294/(g1^40*y) + (g1^70*t^7.486)/y + (2*g1^36*t^7.536)/y + (3*g1^2*t^7.585)/y + t^7.635/(g1^32*y) + (g1^44*t^7.877)/y + (2*g1^10*t^7.927)/y + (3*t^7.976)/(g1^24*y) + (g1^52*t^8.218)/y + (5*g1^18*t^8.268)/y + (5*t^8.317)/(g1^16*y) + (3*t^8.367)/(g1^50*y) - (g1^94*t^8.51)/y - (g1^26*t^8.609)/y + (2*t^8.659)/(g1^8*y) - (2*t^8.708)/(g1^42*y) - (g1^68*t^8.901)/y - (t^4.415*y)/g1^2 - g1^46*t^6.462*y - g1^12*t^6.512*y - (2*t^6.562*y)/g1^22 - g1^20*t^6.853*y + g1^62*t^7.145*y + 3*g1^28*t^7.194*y + (2*t^7.244*y)/g1^6 + (t^7.294*y)/g1^40 + g1^70*t^7.486*y + 2*g1^36*t^7.536*y + 3*g1^2*t^7.585*y + (t^7.635*y)/g1^32 + g1^44*t^7.877*y + 2*g1^10*t^7.927*y + (3*t^7.976*y)/g1^24 + g1^52*t^8.218*y + 5*g1^18*t^8.268*y + (5*t^8.317*y)/g1^16 + (3*t^8.367*y)/g1^50 - g1^94*t^8.51*y - g1^26*t^8.609*y + (2*t^8.659*y)/g1^8 - (2*t^8.708*y)/g1^42 - g1^68*t^8.901*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
5057 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{7}q_{1}\tilde{q}_{2}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ 0.7099 0.9161 0.7749 [M:[1.0713, 0.8143, 1.0572, 0.8285, 1.1715, 0.6858, 0.7142, 0.7142], q:[0.5215, 0.4072], qb:[0.4214, 0.7643], phi:[0.4714]] t^2.058 + 2*t^2.143 + t^2.443 + t^2.486 + t^2.829 + t^3.171 + t^3.214 + t^3.514 + t^3.9 + t^4.115 + 3*t^4.2 + t^4.243 + 3*t^4.285 + t^4.501 + 2*t^4.543 + 2*t^4.586 + 2*t^4.628 + 2*t^4.886 + t^4.929 + 3*t^4.971 + t^5.229 + 2*t^5.272 + 3*t^5.314 + 2*t^5.357 + t^5.572 + t^5.614 + 4*t^5.657 + t^5.957 - t^6. - t^4.414/y - t^4.414*y detail