Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6664 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_1M_3$ + $ M_3M_6$ + $ \phi_1q_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ + $ M_8\phi_1q_2\tilde{q}_1$ + $ M_5M_9$ 0.6309 0.8217 0.7677 [X:[], M:[1.0269, 0.672, 0.9731, 0.7258, 1.2742, 1.0269, 0.7956, 0.8495, 0.7258], q:[0.6371, 0.336], qb:[0.3898, 0.9382], phi:[0.4247]] [X:[], M:[[14], [-22], [-14], [6], [-6], [14], [-32], [-4], [6]], q:[[-3], [-11]], qb:[[17], [5]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_4$, $ M_9$, $ M_7$, $ M_8$, $ \phi_1^2$, $ M_1$, $ M_6$, $ \phi_1q_2^2$, $ M_2^2$, $ M_2M_4$, $ M_2M_9$, $ \phi_1q_1q_2$, $ M_4^2$, $ M_4M_9$, $ M_9^2$, $ \phi_1q_1\tilde{q}_1$, $ M_2M_7$, $ M_4M_7$, $ M_2M_8$, $ M_7M_9$, $ M_2\phi_1^2$, $ M_4M_8$, $ M_8M_9$, $ M_4\phi_1^2$, $ M_9\phi_1^2$, $ q_1\tilde{q}_2$, $ M_7^2$, $ M_7M_8$, $ M_7\phi_1^2$, $ M_1M_2$, $ M_2M_6$, $ M_8^2$, $ M_8\phi_1^2$, $ \phi_1^4$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_1M_4$, $ M_4M_6$, $ M_1M_9$, $ M_6M_9$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2\phi_1q_2^2$, $ M_1M_7$, $ M_6M_7$, $ M_4\phi_1q_2^2$, $ M_9\phi_1q_2^2$, $ M_1M_8$, $ M_6M_8$, $ M_1\phi_1^2$, $ M_6\phi_1^2$, $ M_7\phi_1q_2^2$, $ M_8\phi_1q_2^2$, $ \phi_1^3q_2^2$ . -3 t^2.02 + 2*t^2.18 + t^2.39 + 2*t^2.55 + 2*t^3.08 + t^3.29 + t^4.03 + 2*t^4.19 + 3*t^4.35 + t^4.4 + 4*t^4.56 + 5*t^4.73 + t^4.77 + 2*t^4.94 + 5*t^5.1 + 4*t^5.26 + t^5.31 + 3*t^5.47 + 3*t^5.63 + t^5.68 + t^5.84 - 3*t^6. + t^6.05 + 2*t^6.16 + 2*t^6.21 + 3*t^6.37 + t^6.42 + 2*t^6.53 + 5*t^6.58 + 6*t^6.74 + t^6.79 + 4*t^6.9 + 4*t^6.95 - t^7.06 + 9*t^7.11 + t^7.16 + 9*t^7.27 + 3*t^7.32 + 4*t^7.44 + 6*t^7.48 + 10*t^7.65 + t^7.69 + 6*t^7.81 + 4*t^7.85 + 2*t^8.06 - 2*t^8.18 + 3*t^8.23 + 3*t^8.34 + t^8.39 + t^8.43 - 4*t^8.55 + 5*t^8.6 + 2*t^8.71 + 7*t^8.76 + t^8.81 + t^8.92 + 5*t^8.97 - t^4.27/y - t^6.29/y - t^6.45/y - t^6.66/y - (2*t^6.82)/y + (3*t^7.19)/y + t^7.4/y + (4*t^7.56)/y + (6*t^7.73)/y + t^7.89/y + (2*t^7.94)/y + (4*t^8.1)/y + (5*t^8.26)/y + (3*t^8.47)/y + (3*t^8.63)/y - t^8.84/y - t^4.27*y - t^6.29*y - t^6.45*y - t^6.66*y - 2*t^6.82*y + 3*t^7.19*y + t^7.4*y + 4*t^7.56*y + 6*t^7.73*y + t^7.89*y + 2*t^7.94*y + 4*t^8.1*y + 5*t^8.26*y + 3*t^8.47*y + 3*t^8.63*y - t^8.84*y t^2.02/g1^22 + 2*g1^6*t^2.18 + t^2.39/g1^32 + (2*t^2.55)/g1^4 + 2*g1^14*t^3.08 + t^3.29/g1^24 + t^4.03/g1^44 + (2*t^4.19)/g1^16 + 3*g1^12*t^4.35 + t^4.4/g1^54 + (4*t^4.56)/g1^26 + 5*g1^2*t^4.73 + t^4.77/g1^64 + (2*t^4.94)/g1^36 + (5*t^5.1)/g1^8 + 4*g1^20*t^5.26 + t^5.31/g1^46 + (3*t^5.47)/g1^18 + 3*g1^10*t^5.63 + t^5.68/g1^56 + t^5.84/g1^28 - 3*t^6. + t^6.05/g1^66 + 2*g1^28*t^6.16 + (2*t^6.21)/g1^38 + (3*t^6.37)/g1^10 + t^6.42/g1^76 + 2*g1^18*t^6.53 + (5*t^6.58)/g1^48 + (6*t^6.74)/g1^20 + t^6.79/g1^86 + 4*g1^8*t^6.9 + (4*t^6.95)/g1^58 - g1^36*t^7.06 + (9*t^7.11)/g1^30 + t^7.16/g1^96 + (9*t^7.27)/g1^2 + (3*t^7.32)/g1^68 + 4*g1^26*t^7.44 + (6*t^7.48)/g1^40 + (10*t^7.65)/g1^12 + t^7.69/g1^78 + 6*g1^16*t^7.81 + (4*t^7.85)/g1^50 + (2*t^8.06)/g1^88 - 2*g1^6*t^8.18 + (3*t^8.23)/g1^60 + 3*g1^34*t^8.34 + t^8.39/g1^32 + t^8.43/g1^98 - (4*t^8.55)/g1^4 + (5*t^8.6)/g1^70 + 2*g1^24*t^8.71 + (7*t^8.76)/g1^42 + t^8.81/g1^108 + t^8.92/g1^14 + (5*t^8.97)/g1^80 - t^4.27/(g1^2*y) - t^6.29/(g1^24*y) - (g1^4*t^6.45)/y - t^6.66/(g1^34*y) - (2*t^6.82)/(g1^6*y) + (3*t^7.19)/(g1^16*y) + t^7.4/(g1^54*y) + (4*t^7.56)/(g1^26*y) + (6*g1^2*t^7.73)/y + (g1^30*t^7.89)/y + (2*t^7.94)/(g1^36*y) + (4*t^8.1)/(g1^8*y) + (5*g1^20*t^8.26)/y + (3*t^8.47)/(g1^18*y) + (3*g1^10*t^8.63)/y - t^8.84/(g1^28*y) - (t^4.27*y)/g1^2 - (t^6.29*y)/g1^24 - g1^4*t^6.45*y - (t^6.66*y)/g1^34 - (2*t^6.82*y)/g1^6 + (3*t^7.19*y)/g1^16 + (t^7.4*y)/g1^54 + (4*t^7.56*y)/g1^26 + 6*g1^2*t^7.73*y + g1^30*t^7.89*y + (2*t^7.94*y)/g1^36 + (4*t^8.1*y)/g1^8 + 5*g1^20*t^8.26*y + (3*t^8.47*y)/g1^18 + 3*g1^10*t^8.63*y - (t^8.84*y)/g1^28


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
5065 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_1M_3$ + $ M_3M_6$ + $ \phi_1q_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ + $ M_8\phi_1q_2\tilde{q}_1$ 0.611 0.7849 0.7783 [X:[], M:[1.0286, 0.6694, 0.9714, 0.7265, 1.2735, 1.0286, 0.7918, 0.849], q:[0.6367, 0.3347], qb:[0.3919, 0.9388], phi:[0.4245]] t^2.01 + t^2.18 + t^2.38 + 2*t^2.55 + 2*t^3.09 + t^3.28 + t^3.82 + t^4.02 + t^4.19 + t^4.36 + t^4.38 + 3*t^4.55 + 3*t^4.73 + t^4.75 + 2*t^4.92 + 5*t^5.09 + 2*t^5.27 + t^5.29 + 2*t^5.46 + 3*t^5.63 + t^5.66 + 2*t^5.83 - 2*t^6. - t^4.27/y - t^4.27*y detail