Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6656 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{7}q_{1}\tilde{q}_{2}$ + ${ }M_{8}\phi_{1}^{2}$ + ${ }M_{9}\phi_{1}q_{2}\tilde{q}_{1}$ | 0.705 | 0.9096 | 0.7751 | [M:[1.081, 0.8073, 1.0559, 0.8324, 1.1676, 0.6704, 0.7207, 1.0559, 0.6955], q:[0.5154, 0.4036], qb:[0.4288, 0.764], phi:[0.4721]] | [M:[[-30], [22], [4], [-12], [12], [48], [-20], [4], [14]], q:[[19], [11]], qb:[[-23], [1]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{9}$, ${ }M_{7}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{8}$, ${ }M_{1}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{9}$, ${ }M_{6}M_{7}$, ${ }M_{9}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{7}M_{9}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{2}M_{9}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{4}M_{9}$, ${ }M_{4}M_{7}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{8}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{9}$, ${ }M_{8}M_{9}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}M_{8}$, ${ }M_{1}M_{9}$, ${ }M_{1}M_{7}$, ${ }M_{5}M_{6}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{8}$, ${ }M_{5}M_{9}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{7}$, ${ }M_{4}M_{8}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{9}\phi_{1}q_{2}^{2}$ | ${}M_{7}\phi_{1}q_{2}^{2}$ | -1 | t^2.011 + t^2.087 + t^2.162 + t^2.422 + t^2.497 + 2*t^3.168 + t^3.243 + t^3.503 + t^3.838 + t^4.022 + t^4.098 + 3*t^4.173 + 2*t^4.249 + t^4.324 + t^4.433 + 3*t^4.508 + 2*t^4.584 + t^4.659 + t^4.844 + t^4.919 + t^4.994 + 2*t^5.179 + 3*t^5.254 + 3*t^5.33 + t^5.405 + t^5.514 + 3*t^5.589 + 3*t^5.665 + t^5.849 + t^5.925 - t^6. + t^6.033 - t^6.075 + t^6.109 + 3*t^6.184 + 4*t^6.26 + 5*t^6.335 + 3*t^6.411 + t^6.444 + 2*t^6.486 + 3*t^6.519 + 5*t^6.595 + 6*t^6.67 + 2*t^6.746 + t^6.821 + t^6.855 + 3*t^6.93 + 4*t^7.006 - t^7.156 + 2*t^7.19 + 4*t^7.265 + 7*t^7.341 + 4*t^7.416 + 3*t^7.492 + t^7.525 + t^7.567 + 3*t^7.6 + 7*t^7.676 + 4*t^7.751 + t^7.827 + t^7.86 + t^7.936 + 3*t^8.011 + t^8.044 - 2*t^8.087 + t^8.12 - 3*t^8.162 + 3*t^8.195 - t^8.237 + 4*t^8.271 + 8*t^8.346 + 3*t^8.422 + t^8.455 + 4*t^8.497 + 3*t^8.531 + 3*t^8.573 + 5*t^8.606 + 2*t^8.648 + 10*t^8.681 + 9*t^8.757 + 6*t^8.832 + t^8.866 + 2*t^8.908 + 3*t^8.941 + t^8.983 - t^4.416/y - t^6.427/y - t^6.503/y - t^6.578/y - t^6.838/y + t^7.098/y + (2*t^7.173)/y + (2*t^7.249)/y + t^7.433/y + (2*t^7.508)/y + t^7.584/y + t^7.919/y + t^7.994/y + (2*t^8.179)/y + (4*t^8.254)/y + (4*t^8.33)/y + (2*t^8.405)/y - t^8.438/y + t^8.589/y + (3*t^8.665)/y + t^8.925/y - t^4.416*y - t^6.427*y - t^6.503*y - t^6.578*y - t^6.838*y + t^7.098*y + 2*t^7.173*y + 2*t^7.249*y + t^7.433*y + 2*t^7.508*y + t^7.584*y + t^7.919*y + t^7.994*y + 2*t^8.179*y + 4*t^8.254*y + 4*t^8.33*y + 2*t^8.405*y - t^8.438*y + t^8.589*y + 3*t^8.665*y + t^8.925*y | g1^48*t^2.011 + g1^14*t^2.087 + t^2.162/g1^20 + g1^22*t^2.422 + t^2.497/g1^12 + 2*g1^4*t^3.168 + t^3.243/g1^30 + g1^12*t^3.503 + g1^20*t^3.838 + g1^96*t^4.022 + g1^62*t^4.098 + 3*g1^28*t^4.173 + (2*t^4.249)/g1^6 + t^4.324/g1^40 + g1^70*t^4.433 + 3*g1^36*t^4.508 + 2*g1^2*t^4.584 + t^4.659/g1^32 + g1^44*t^4.844 + g1^10*t^4.919 + t^4.994/g1^24 + 2*g1^52*t^5.179 + 3*g1^18*t^5.254 + (3*t^5.33)/g1^16 + t^5.405/g1^50 + g1^60*t^5.514 + 3*g1^26*t^5.589 + (3*t^5.665)/g1^8 + g1^68*t^5.849 + g1^34*t^5.925 - t^6. + g1^144*t^6.033 - t^6.075/g1^34 + g1^110*t^6.109 + 3*g1^76*t^6.184 + 4*g1^42*t^6.26 + 5*g1^8*t^6.335 + (3*t^6.411)/g1^26 + g1^118*t^6.444 + (2*t^6.486)/g1^60 + 3*g1^84*t^6.519 + 5*g1^50*t^6.595 + 6*g1^16*t^6.67 + (2*t^6.746)/g1^18 + t^6.821/g1^52 + g1^92*t^6.855 + 3*g1^58*t^6.93 + 4*g1^24*t^7.006 - t^7.156/g1^44 + 2*g1^100*t^7.19 + 4*g1^66*t^7.265 + 7*g1^32*t^7.341 + (4*t^7.416)/g1^2 + (3*t^7.492)/g1^36 + g1^108*t^7.525 + t^7.567/g1^70 + 3*g1^74*t^7.6 + 7*g1^40*t^7.676 + 4*g1^6*t^7.751 + t^7.827/g1^28 + g1^116*t^7.86 + g1^82*t^7.936 + 3*g1^48*t^8.011 + g1^192*t^8.044 - 2*g1^14*t^8.087 + g1^158*t^8.12 - (3*t^8.162)/g1^20 + 3*g1^124*t^8.195 - t^8.237/g1^54 + 4*g1^90*t^8.271 + 8*g1^56*t^8.346 + 3*g1^22*t^8.422 + g1^166*t^8.455 + (4*t^8.497)/g1^12 + 3*g1^132*t^8.531 + (3*t^8.573)/g1^46 + 5*g1^98*t^8.606 + (2*t^8.648)/g1^80 + 10*g1^64*t^8.681 + 9*g1^30*t^8.757 + (6*t^8.832)/g1^4 + g1^140*t^8.866 + (2*t^8.908)/g1^38 + 3*g1^106*t^8.941 + t^8.983/g1^72 - t^4.416/(g1^2*y) - (g1^46*t^6.427)/y - (g1^12*t^6.503)/y - t^6.578/(g1^22*y) - (g1^20*t^6.838)/y + (g1^62*t^7.098)/y + (2*g1^28*t^7.173)/y + (2*t^7.249)/(g1^6*y) + (g1^70*t^7.433)/y + (2*g1^36*t^7.508)/y + (g1^2*t^7.584)/y + (g1^10*t^7.919)/y + t^7.994/(g1^24*y) + (2*g1^52*t^8.179)/y + (4*g1^18*t^8.254)/y + (4*t^8.33)/(g1^16*y) + (2*t^8.405)/(g1^50*y) - (g1^94*t^8.438)/y + (g1^26*t^8.589)/y + (3*t^8.665)/(g1^8*y) + (g1^34*t^8.925)/y - (t^4.416*y)/g1^2 - g1^46*t^6.427*y - g1^12*t^6.503*y - (t^6.578*y)/g1^22 - g1^20*t^6.838*y + g1^62*t^7.098*y + 2*g1^28*t^7.173*y + (2*t^7.249*y)/g1^6 + g1^70*t^7.433*y + 2*g1^36*t^7.508*y + g1^2*t^7.584*y + g1^10*t^7.919*y + (t^7.994*y)/g1^24 + 2*g1^52*t^8.179*y + 4*g1^18*t^8.254*y + (4*t^8.33*y)/g1^16 + (2*t^8.405*y)/g1^50 - g1^94*t^8.438*y + g1^26*t^8.589*y + (3*t^8.665*y)/g1^8 + g1^34*t^8.925*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
5055 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{7}q_{1}\tilde{q}_{2}$ + ${ }M_{8}\phi_{1}^{2}$ | 0.6844 | 0.8699 | 0.7868 | [M:[1.0791, 0.8087, 1.0561, 0.8316, 1.1684, 0.6735, 0.7194, 1.0561], q:[0.5166, 0.4043], qb:[0.4273, 0.764], phi:[0.4719]] | t^2.02 + t^2.158 + t^2.426 + t^2.495 + 2*t^3.168 + t^3.237 + t^3.505 + t^3.842 + t^3.911 + t^4.041 + 2*t^4.179 + t^4.247 + t^4.316 + t^4.446 + 2*t^4.515 + t^4.584 + t^4.653 + t^4.852 + t^4.921 + t^4.99 + 2*t^5.189 + t^5.258 + 2*t^5.327 + t^5.395 + t^5.526 + 2*t^5.594 + 3*t^5.663 + t^5.862 + t^5.931 - t^6. - t^4.416/y - t^4.416*y | detail |