Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
663 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ 0.7021 0.8823 0.7958 [M:[0.9637, 1.1255, 0.9715, 0.6883, 0.8745, 0.6805], q:[0.7814, 0.4411], qb:[0.5951, 0.4334], phi:[0.4372]] [M:[[-7, 1], [4, 0], [-11, -1], [6, 0], [-4, 0], [10, 2]], q:[[1, 0], [-4, -1]], qb:[[11, 0], [0, 1]], phi:[[-2, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{4}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{6}q_{1}q_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}q_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.041 + t^2.065 + 2*t^2.623 + t^2.891 + t^2.915 + t^3.644 + t^3.668 + t^3.912 + t^4.083 + t^4.106 + 2*t^4.13 + t^4.397 + t^4.421 + 2*t^4.665 + 2*t^4.688 + t^4.883 + t^4.933 + 2*t^4.956 + t^4.979 + 3*t^5.247 + t^5.515 + t^5.538 + t^5.686 + 2*t^5.709 + t^5.732 + t^5.782 + t^5.806 + t^5.829 + t^5.953 - 3*t^6. - t^6.023 + t^6.124 + t^6.148 + 2*t^6.171 + 2*t^6.194 + t^6.268 + t^6.291 + t^6.439 + t^6.462 + 3*t^6.535 + t^6.559 + t^6.582 + 2*t^6.706 + 2*t^6.73 + 2*t^6.753 + t^6.803 - t^6.85 + t^6.924 + t^6.947 + t^6.974 + 2*t^6.997 + 3*t^7.021 + 2*t^7.044 + 3*t^7.288 + 3*t^7.312 + t^7.506 + 2*t^7.556 + 2*t^7.579 + t^7.727 + 2*t^7.75 + 2*t^7.774 + t^7.797 + 2*t^7.824 + 2*t^7.847 + 5*t^7.87 + t^7.894 + t^7.995 - 2*t^8.041 - 4*t^8.065 - t^8.088 + t^8.138 + t^8.161 + t^8.166 + t^8.189 + 2*t^8.212 + 2*t^8.236 + 2*t^8.259 + 2*t^8.309 + t^8.332 - t^8.356 + t^8.406 + t^8.429 + t^8.453 + t^8.48 + t^8.503 + t^8.527 + t^8.55 + 3*t^8.577 + 2*t^8.6 - 4*t^8.623 - t^8.647 + t^8.674 + t^8.697 + t^8.72 + t^8.744 + 2*t^8.748 + 2*t^8.771 + 3*t^8.794 + t^8.818 + t^8.844 - 3*t^8.891 - 3*t^8.915 - t^8.938 + t^8.965 + t^8.989 - t^4.312/y - t^6.353/y - t^6.377/y - t^6.935/y + t^7.106/y - t^7.203/y - t^7.226/y + t^7.397/y + t^7.421/y + (2*t^7.665)/y + (3*t^7.688)/y + t^7.933/y + (2*t^7.956)/y + t^7.979/y + (2*t^8.247)/y + t^8.27/y - t^8.395/y - t^8.418/y - t^8.441/y + (2*t^8.515)/y + (2*t^8.538)/y + t^8.686/y + (2*t^8.709)/y + t^8.732/y + t^8.806/y + t^8.953/y - t^4.312*y - t^6.353*y - t^6.377*y - t^6.935*y + t^7.106*y - t^7.203*y - t^7.226*y + t^7.397*y + t^7.421*y + 2*t^7.665*y + 3*t^7.688*y + t^7.933*y + 2*t^7.956*y + t^7.979*y + 2*t^8.247*y + t^8.27*y - t^8.395*y - t^8.418*y - t^8.441*y + 2*t^8.515*y + 2*t^8.538*y + t^8.686*y + 2*t^8.709*y + t^8.732*y + t^8.806*y + t^8.953*y g1^10*g2^2*t^2.041 + g1^6*t^2.065 + (2*t^2.623)/g1^4 + (g2*t^2.891)/g1^7 + t^2.915/(g1^11*g2) + g1*g2*t^3.644 + t^3.668/(g1^3*g2) + (g2^2*t^3.912)/g1^2 + g1^20*g2^4*t^4.083 + g1^16*g2^2*t^4.106 + 2*g1^12*t^4.13 + g1^9*g2*t^4.397 + (g1^5*t^4.421)/g2 + 2*g1^6*g2^2*t^4.665 + 2*g1^2*t^4.688 + g1^20*t^4.883 + g1^3*g2^3*t^4.933 + (2*g2*t^4.956)/g1 + t^4.979/(g1^5*g2) + (3*t^5.247)/g1^8 + (g2*t^5.515)/g1^11 + t^5.538/(g1^15*g2) + g1^11*g2^3*t^5.686 + 2*g1^7*g2*t^5.709 + (g1^3*t^5.732)/g2 + (g2^2*t^5.782)/g1^14 + t^5.806/g1^18 + t^5.829/(g1^22*g2^2) + g1^8*g2^4*t^5.953 - 3*t^6. - t^6.023/(g1^4*g2^2) + g1^30*g2^6*t^6.124 + g1^26*g2^4*t^6.148 + 2*g1^22*g2^2*t^6.171 + 2*g1^18*t^6.194 + (g2*t^6.268)/g1^3 + t^6.291/(g1^7*g2) + g1^19*g2^3*t^6.439 + g1^15*g2*t^6.462 + (3*g2^2*t^6.535)/g1^6 + t^6.559/g1^10 + t^6.582/(g1^14*g2^2) + 2*g1^16*g2^4*t^6.706 + 2*g1^12*g2^2*t^6.73 + 2*g1^8*t^6.753 + (g2^3*t^6.803)/g1^9 - t^6.85/(g1^17*g2) + g1^30*g2^2*t^6.924 + g1^26*t^6.947 + g1^13*g2^5*t^6.974 + 2*g1^9*g2^3*t^6.997 + 3*g1^5*g2*t^7.021 + (2*g1*t^7.044)/g2 + 3*g1^2*g2^2*t^7.288 + (3*t^7.312)/g1^2 + g1^16*t^7.506 + (2*g2^3*t^7.556)/g1 + (2*g2*t^7.579)/g1^5 + g1^21*g2^5*t^7.727 + 2*g1^17*g2^3*t^7.75 + 2*g1^13*g2*t^7.774 + (g1^9*t^7.797)/g2 + (2*g2^4*t^7.824)/g1^4 + (2*g2^2*t^7.847)/g1^8 + (5*t^7.87)/g1^12 + t^7.894/(g1^16*g2^2) + g1^18*g2^6*t^7.995 - 2*g1^10*g2^2*t^8.041 - 4*g1^6*t^8.065 - (g1^2*t^8.088)/g2^2 + (g2*t^8.138)/g1^15 + t^8.161/(g1^19*g2) + g1^40*g2^8*t^8.166 + g1^36*g2^6*t^8.189 + 2*g1^32*g2^4*t^8.212 + 2*g1^28*g2^2*t^8.236 + 2*g1^24*t^8.259 + 2*g1^7*g2^3*t^8.309 + g1^3*g2*t^8.332 - t^8.356/(g1*g2) + (g2^2*t^8.406)/g1^18 + t^8.429/g1^22 + t^8.453/(g1^26*g2^2) + g1^29*g2^5*t^8.48 + g1^25*g2^3*t^8.503 + g1^21*g2*t^8.527 + (g1^17*t^8.55)/g2 + 3*g1^4*g2^4*t^8.577 + 2*g2^2*t^8.6 - (4*t^8.623)/g1^4 - t^8.647/(g1^8*g2^2) + (g2^3*t^8.674)/g1^21 + (g2*t^8.697)/g1^25 + t^8.72/(g1^29*g2) + t^8.744/(g1^33*g2^3) + 2*g1^26*g2^6*t^8.748 + 2*g1^22*g2^4*t^8.771 + 3*g1^18*g2^2*t^8.794 + g1^14*t^8.818 + g1*g2^5*t^8.844 - (3*g2*t^8.891)/g1^7 - (3*t^8.915)/(g1^11*g2) - t^8.938/(g1^15*g2^3) + g1^40*g2^4*t^8.965 + g1^36*g2^2*t^8.989 - t^4.312/(g1^2*y) - (g1^8*g2^2*t^6.353)/y - (g1^4*t^6.377)/y - t^6.935/(g1^6*y) + (g1^16*g2^2*t^7.106)/y - (g2*t^7.203)/(g1^9*y) - t^7.226/(g1^13*g2*y) + (g1^9*g2*t^7.397)/y + (g1^5*t^7.421)/(g2*y) + (2*g1^6*g2^2*t^7.665)/y + (3*g1^2*t^7.688)/y + (g1^3*g2^3*t^7.933)/y + (2*g2*t^7.956)/(g1*y) + t^7.979/(g1^5*g2*y) + (2*t^8.247)/(g1^8*y) + t^8.27/(g1^12*g2^2*y) - (g1^18*g2^4*t^8.395)/y - (g1^14*g2^2*t^8.418)/y - (g1^10*t^8.441)/y + (2*g2*t^8.515)/(g1^11*y) + (2*t^8.538)/(g1^15*g2*y) + (g1^11*g2^3*t^8.686)/y + (2*g1^7*g2*t^8.709)/y + (g1^3*t^8.732)/(g2*y) + t^8.806/(g1^18*y) + (g1^8*g2^4*t^8.953)/y - (t^4.312*y)/g1^2 - g1^8*g2^2*t^6.353*y - g1^4*t^6.377*y - (t^6.935*y)/g1^6 + g1^16*g2^2*t^7.106*y - (g2*t^7.203*y)/g1^9 - (t^7.226*y)/(g1^13*g2) + g1^9*g2*t^7.397*y + (g1^5*t^7.421*y)/g2 + 2*g1^6*g2^2*t^7.665*y + 3*g1^2*t^7.688*y + g1^3*g2^3*t^7.933*y + (2*g2*t^7.956*y)/g1 + (t^7.979*y)/(g1^5*g2) + (2*t^8.247*y)/g1^8 + (t^8.27*y)/(g1^12*g2^2) - g1^18*g2^4*t^8.395*y - g1^14*g2^2*t^8.418*y - g1^10*t^8.441*y + (2*g2*t^8.515*y)/g1^11 + (2*t^8.538*y)/(g1^15*g2) + g1^11*g2^3*t^8.686*y + 2*g1^7*g2*t^8.709*y + (g1^3*t^8.732*y)/g2 + (t^8.806*y)/g1^18 + g1^8*g2^4*t^8.953*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1061 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}X_{1}$ 0.5217 0.6488 0.804 [X:[1.4208], M:[0.8962, 1.2277, 0.5792, 0.8415, 0.7723, 1.1585], q:[0.8069, 0.2277], qb:[0.8761, 0.5447], phi:[0.3862]] 2*t^2.317 + t^2.525 + t^2.689 + t^3.104 + t^3.475 + t^4.262 + t^4.426 + t^4.47 + 3*t^4.634 + 2*t^4.842 + t^5.006 + t^5.049 + t^5.377 + 2*t^5.421 + t^5.628 + 2*t^5.792 - 2*t^6. - t^4.158/y - t^4.158*y detail
1062 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$ 0.7021 0.8818 0.7962 [M:[0.9685, 1.1251, 0.9685, 0.6876, 0.8749, 0.6876], q:[0.7813, 0.4375], qb:[0.594, 0.4375], phi:[0.4375]] 2*t^2.063 + 2*t^2.625 + 2*t^2.906 + 2*t^3.656 + t^3.937 + 4*t^4.126 + 2*t^4.407 + 4*t^4.688 + t^4.876 + 4*t^4.969 + 3*t^5.249 + 2*t^5.53 + 4*t^5.719 + 3*t^5.811 - 3*t^6. - t^4.312/y - t^4.312*y detail
1060 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.6986 0.8743 0.799 [M:[0.9932, 1.1276, 0.9328, 0.6913, 0.8724, 0.7517], q:[0.7819, 0.406], qb:[0.6008, 0.4664], phi:[0.4362]] t^2.074 + t^2.255 + 2*t^2.617 + t^2.798 + t^2.98 + t^3.564 + t^3.745 + t^4.107 + 2*t^4.148 + 2*t^4.329 + 2*t^4.51 + 2*t^4.691 + 3*t^4.872 + t^4.913 + 2*t^5.054 + 4*t^5.235 + t^5.416 + 2*t^5.597 + t^5.638 + t^5.778 + t^5.819 + t^5.959 - 2*t^6. - t^4.309/y - t^4.309*y detail
1059 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{6}^{2}$ 0.6382 0.7991 0.7986 [M:[1.0473, 1.1509, 0.7736, 0.7264, 0.8491, 1.0], q:[0.7877, 0.2877], qb:[0.665, 0.5614], phi:[0.4245]] t^2.179 + t^2.321 + 2*t^2.547 + t^3. + t^3.142 + t^3.226 + t^4.047 + t^4.132 + 2*t^4.358 + t^4.5 + 2*t^4.642 + 2*t^4.726 + t^4.868 + t^4.953 + 3*t^5.095 + t^5.264 + 2*t^5.321 + t^5.405 + t^5.463 + 3*t^5.547 + t^5.689 + t^5.774 - 2*t^6. - t^4.274/y - t^4.274*y detail
1063 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ 0.7228 0.9222 0.7838 [M:[0.9709, 1.124, 0.9709, 0.6861, 0.876, 0.6861, 0.6861], q:[0.781, 0.438], qb:[0.5911, 0.438], phi:[0.438]] 3*t^2.058 + 2*t^2.628 + 2*t^2.913 + 2*t^3.657 + 7*t^4.116 + 2*t^4.401 + 6*t^4.686 + t^4.861 + 6*t^4.971 + 3*t^5.256 + 2*t^5.541 + 6*t^5.715 + 3*t^5.826 - 5*t^6. - t^4.314/y - t^4.314*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
411 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ 0.6814 0.8416 0.8096 [M:[0.9657, 1.1263, 0.9657, 0.6895, 0.8737], q:[0.7816, 0.4368], qb:[0.5974, 0.4368], phi:[0.4368]] t^2.069 + 2*t^2.621 + 2*t^2.897 + 2*t^3.655 + 2*t^3.931 + 2*t^4.137 + 2*t^4.413 + 2*t^4.69 + t^4.895 + 2*t^4.966 + 3*t^5.242 + 2*t^5.518 + 2*t^5.724 + 3*t^5.794 - 3*t^6. - t^4.31/y - t^4.31*y detail