Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6578 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ q_1q_2\tilde{q}_2^2$ + $ M_7q_1\tilde{q}_1$ + $ M_8\phi_1q_2^2$ + $ M_9q_1\tilde{q}_2$ 0.671 0.8943 0.7503 [X:[], M:[0.971, 1.0871, 1.029, 0.9129, 0.7718, 0.7137, 0.8299, 0.9129, 0.7718], q:[0.7427, 0.2863], qb:[0.4274, 0.4855], phi:[0.5145]] [X:[], M:[[4], [-12], [-4], [12], [-3], [5], [-11], [12], [-3]], q:[[1], [-5]], qb:[[10], [2]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ q_2\tilde{q}_1$, $ M_5$, $ M_9$, $ q_2\tilde{q}_2$, $ M_7$, $ M_4$, $ M_8$, $ M_3$, $ \phi_1^2$, $ \phi_1\tilde{q}_1^2$, $ M_6^2$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5M_6$, $ M_6M_9$, $ M_5q_2\tilde{q}_1$, $ M_9q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_5^2$, $ M_6M_7$, $ M_5M_9$, $ M_9^2$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_9q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_5M_7$, $ M_7M_9$, $ M_7q_2\tilde{q}_2$, $ M_4M_6$, $ M_6M_8$, $ M_4q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ M_7^2$, $ M_4M_5$, $ M_5M_8$, $ M_4M_9$, $ M_8M_9$, $ \phi_1q_1\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ M_3M_6$, $ M_4M_7$, $ M_7M_8$, $ M_6\phi_1^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_3M_5$, $ M_3M_9$, $ M_5\phi_1^2$, $ M_9\phi_1^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_4^2$, $ M_4M_8$, $ M_8^2$, $ M_3M_7$, $ M_7\phi_1^2$, $ M_3M_4$, $ M_3M_8$, $ M_4\phi_1^2$, $ M_8\phi_1^2$ . -4 2*t^2.14 + 3*t^2.32 + t^2.49 + 2*t^2.74 + 2*t^3.09 + t^4.11 + 4*t^4.28 + 7*t^4.46 + 8*t^4.63 + 3*t^4.8 + 4*t^4.88 + t^4.98 + 6*t^5.05 + 6*t^5.23 + 5*t^5.4 + 3*t^5.48 + t^5.58 + 2*t^5.83 - 4*t^6. + 2*t^6.25 + 7*t^6.42 + 11*t^6.6 + 15*t^6.77 + 2*t^6.85 + 14*t^6.95 + 7*t^7.02 + 7*t^7.12 + 14*t^7.2 + 3*t^7.29 + 18*t^7.37 + t^7.47 + 13*t^7.54 + 6*t^7.62 + 11*t^7.72 + 8*t^7.79 + 2*t^7.89 + 3*t^7.97 + t^8.07 - 7*t^8.14 + 5*t^8.22 - 12*t^8.32 + 4*t^8.39 - 6*t^8.49 + 13*t^8.56 - 2*t^8.66 + 8*t^8.74 + 16*t^8.91 + 4*t^8.99 - t^4.54/y - t^6.68/y - (2*t^6.86)/y - t^7.03/y + (7*t^7.46)/y + (4*t^7.63)/y + (4*t^7.8)/y + (4*t^7.88)/y + (7*t^8.05)/y + (8*t^8.23)/y + (7*t^8.4)/y + t^8.48/y + (2*t^8.58)/y + (3*t^8.83)/y - t^4.54*y - t^6.68*y - 2*t^6.86*y - t^7.03*y + 7*t^7.46*y + 4*t^7.63*y + 4*t^7.8*y + 4*t^7.88*y + 7*t^8.05*y + 8*t^8.23*y + 7*t^8.4*y + t^8.48*y + 2*t^8.58*y + 3*t^8.83*y 2*g1^5*t^2.14 + (3*t^2.32)/g1^3 + t^2.49/g1^11 + 2*g1^12*t^2.74 + (2*t^3.09)/g1^4 + g1^18*t^4.11 + 4*g1^10*t^4.28 + 7*g1^2*t^4.46 + (8*t^4.63)/g1^6 + (3*t^4.8)/g1^14 + 4*g1^17*t^4.88 + t^4.98/g1^22 + 6*g1^9*t^5.05 + 6*g1*t^5.23 + (5*t^5.4)/g1^7 + 3*g1^24*t^5.48 + t^5.58/g1^15 + 2*g1^8*t^5.83 - 4*t^6. + 2*g1^23*t^6.25 + 7*g1^15*t^6.42 + 11*g1^7*t^6.6 + (15*t^6.77)/g1 + 2*g1^30*t^6.85 + (14*t^6.95)/g1^9 + 7*g1^22*t^7.02 + (7*t^7.12)/g1^17 + 14*g1^14*t^7.2 + (3*t^7.29)/g1^25 + 18*g1^6*t^7.37 + t^7.47/g1^33 + (13*t^7.54)/g1^2 + 6*g1^29*t^7.62 + (11*t^7.72)/g1^10 + 8*g1^21*t^7.79 + (2*t^7.89)/g1^18 + 3*g1^13*t^7.97 + t^8.07/g1^26 - 7*g1^5*t^8.14 + 5*g1^36*t^8.22 - (12*t^8.32)/g1^3 + 4*g1^28*t^8.39 - (6*t^8.49)/g1^11 + 13*g1^20*t^8.56 - (2*t^8.66)/g1^19 + 8*g1^12*t^8.74 + 16*g1^4*t^8.91 + 4*g1^35*t^8.99 - t^4.54/(g1^2*y) - (g1^3*t^6.68)/y - (2*t^6.86)/(g1^5*y) - t^7.03/(g1^13*y) + (7*g1^2*t^7.46)/y + (4*t^7.63)/(g1^6*y) + (4*t^7.8)/(g1^14*y) + (4*g1^17*t^7.88)/y + (7*g1^9*t^8.05)/y + (8*g1*t^8.23)/y + (7*t^8.4)/(g1^7*y) + (g1^24*t^8.48)/y + (2*t^8.58)/(g1^15*y) + (3*g1^8*t^8.83)/y - (t^4.54*y)/g1^2 - g1^3*t^6.68*y - (2*t^6.86*y)/g1^5 - (t^7.03*y)/g1^13 + 7*g1^2*t^7.46*y + (4*t^7.63*y)/g1^6 + (4*t^7.8*y)/g1^14 + 4*g1^17*t^7.88*y + 7*g1^9*t^8.05*y + 8*g1*t^8.23*y + (7*t^8.4*y)/g1^7 + g1^24*t^8.48*y + (2*t^8.58*y)/g1^15 + 3*g1^8*t^8.83*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4997 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ q_1q_2\tilde{q}_2^2$ + $ M_7q_1\tilde{q}_1$ + $ M_8\phi_1q_2^2$ 0.653 0.8624 0.7572 [X:[], M:[0.9692, 1.0923, 1.0308, 0.9077, 0.7731, 0.7115, 0.8347, 0.9077], q:[0.7423, 0.2885], qb:[0.423, 0.4846], phi:[0.5154]] 2*t^2.13 + 2*t^2.32 + t^2.5 + 2*t^2.72 + 2*t^3.09 + t^3.68 + t^4.08 + 4*t^4.27 + 5*t^4.45 + 5*t^4.64 + 2*t^4.82 + 4*t^4.86 + t^5.01 + 4*t^5.04 + 6*t^5.23 + 3*t^5.41 + 3*t^5.45 + t^5.6 + 4*t^5.82 - 2*t^6. - t^4.55/y - t^4.55*y detail