Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6558 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{7}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{8}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{9}\phi_{1}q_{1}^{2}$ | 0.6448 | 0.8483 | 0.7602 | [M:[1.0, 1.0182, 0.9635, 1.2546, 0.7089, 0.7454, 0.7637, 0.7272, 1.0182], q:[0.2454, 0.7546], qb:[0.5, 0.5365], phi:[0.4909]] | [M:[[0], [4], [-8], [1], [-9], [-1], [3], [-5], [4]], q:[[-1], [1]], qb:[[0], [8]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }M_{8}$, ${ }M_{6}$, ${ }M_{7}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{2}$, ${ }M_{9}$, ${ }M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{5}M_{6}$, ${ }M_{8}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{6}M_{8}$, ${ }M_{6}^{2}$, ${ }M_{7}M_{8}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{6}M_{7}$, ${ }M_{8}q_{1}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{8}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{7}$, ${ }M_{1}M_{8}$, ${ }M_{5}M_{9}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{8}$, ${ }M_{8}M_{9}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{6}M_{9}$, ${ }M_{2}M_{7}$, ${ }M_{7}M_{9}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{9}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}M_{5}$, ${ }M_{2}M_{3}$, ${ }M_{4}M_{8}$, ${ }M_{3}M_{9}$ | ${}$ | -2 | t^2.127 + t^2.182 + t^2.236 + t^2.291 + t^2.346 + t^2.891 + t^3. + 2*t^3.055 + t^3.764 + t^4.254 + t^4.308 + 2*t^4.363 + 2*t^4.418 + 4*t^4.473 + 2*t^4.527 + 3*t^4.582 + t^4.637 + 2*t^4.692 + t^5.017 + t^5.072 + t^5.127 + 4*t^5.182 + 3*t^5.236 + 3*t^5.291 + 3*t^5.346 + 2*t^5.401 + t^5.781 + t^5.891 + 2*t^5.945 - 2*t^6. + 2*t^6.055 + 2*t^6.109 + t^6.38 + t^6.435 + 2*t^6.49 + 3*t^6.545 + 4*t^6.599 + 5*t^6.654 + 4*t^6.709 + 4*t^6.764 + 6*t^6.818 + 3*t^6.873 + 3*t^6.928 + 2*t^6.983 + 2*t^7.037 + t^7.144 + t^7.199 + 2*t^7.254 + 4*t^7.308 + 5*t^7.363 + 5*t^7.418 + 6*t^7.473 + 7*t^7.527 + 5*t^7.582 + 5*t^7.637 + 3*t^7.692 + 3*t^7.746 + t^7.908 + t^7.963 + t^8.017 + 3*t^8.072 - t^8.127 - t^8.182 + 2*t^8.236 - 2*t^8.291 + t^8.401 + 2*t^8.455 + t^8.507 + t^8.562 + 2*t^8.617 + 4*t^8.672 + 5*t^8.726 + 6*t^8.781 + 8*t^8.836 + t^8.891 + 8*t^8.945 - t^4.473/y - t^6.599/y - t^6.654/y - t^6.764/y + t^7.308/y + (3*t^7.418)/y + (2*t^7.473)/y + t^7.527/y + (2*t^7.582)/y + t^7.637/y + t^8.017/y + t^8.072/y + (2*t^8.127)/y + (5*t^8.182)/y + (4*t^8.236)/y + (4*t^8.291)/y + (4*t^8.346)/y + (2*t^8.401)/y - t^8.726/y - t^8.781/y - t^8.836/y + t^8.891/y + (2*t^8.945)/y - t^4.473*y - t^6.599*y - t^6.654*y - t^6.764*y + t^7.308*y + 3*t^7.418*y + 2*t^7.473*y + t^7.527*y + 2*t^7.582*y + t^7.637*y + t^8.017*y + t^8.072*y + 2*t^8.127*y + 5*t^8.182*y + 4*t^8.236*y + 4*t^8.291*y + 4*t^8.346*y + 2*t^8.401*y - t^8.726*y - t^8.781*y - t^8.836*y + t^8.891*y + 2*t^8.945*y | t^2.127/g1^9 + t^2.182/g1^5 + t^2.236/g1 + g1^3*t^2.291 + g1^7*t^2.346 + t^2.891/g1^8 + t^3. + 2*g1^4*t^3.055 + g1*t^3.764 + t^4.254/g1^18 + t^4.308/g1^14 + (2*t^4.363)/g1^10 + (2*t^4.418)/g1^6 + (4*t^4.473)/g1^2 + 2*g1^2*t^4.527 + 3*g1^6*t^4.582 + g1^10*t^4.637 + 2*g1^14*t^4.692 + t^5.017/g1^17 + t^5.072/g1^13 + t^5.127/g1^9 + (4*t^5.182)/g1^5 + (3*t^5.236)/g1 + 3*g1^3*t^5.291 + 3*g1^7*t^5.346 + 2*g1^11*t^5.401 + t^5.781/g1^16 + t^5.891/g1^8 + (2*t^5.945)/g1^4 - 2*t^6. + 2*g1^4*t^6.055 + 2*g1^8*t^6.109 + t^6.38/g1^27 + t^6.435/g1^23 + (2*t^6.49)/g1^19 + (3*t^6.545)/g1^15 + (4*t^6.599)/g1^11 + (5*t^6.654)/g1^7 + (4*t^6.709)/g1^3 + 4*g1*t^6.764 + 6*g1^5*t^6.818 + 3*g1^9*t^6.873 + 3*g1^13*t^6.928 + 2*g1^17*t^6.983 + 2*g1^21*t^7.037 + t^7.144/g1^26 + t^7.199/g1^22 + (2*t^7.254)/g1^18 + (4*t^7.308)/g1^14 + (5*t^7.363)/g1^10 + (5*t^7.418)/g1^6 + (6*t^7.473)/g1^2 + 7*g1^2*t^7.527 + 5*g1^6*t^7.582 + 5*g1^10*t^7.637 + 3*g1^14*t^7.692 + 3*g1^18*t^7.746 + t^7.908/g1^25 + t^7.963/g1^21 + t^8.017/g1^17 + (3*t^8.072)/g1^13 - t^8.127/g1^9 - t^8.182/g1^5 + (2*t^8.236)/g1 - 2*g1^3*t^8.291 + g1^11*t^8.401 + 2*g1^15*t^8.455 + t^8.507/g1^36 + t^8.562/g1^32 + (2*t^8.617)/g1^28 + (4*t^8.672)/g1^24 + (5*t^8.726)/g1^20 + (6*t^8.781)/g1^16 + (8*t^8.836)/g1^12 + t^8.891/g1^8 + (8*t^8.945)/g1^4 - t^4.473/(g1^2*y) - t^6.599/(g1^11*y) - t^6.654/(g1^7*y) - (g1*t^6.764)/y + t^7.308/(g1^14*y) + (3*t^7.418)/(g1^6*y) + (2*t^7.473)/(g1^2*y) + (g1^2*t^7.527)/y + (2*g1^6*t^7.582)/y + (g1^10*t^7.637)/y + t^8.017/(g1^17*y) + t^8.072/(g1^13*y) + (2*t^8.127)/(g1^9*y) + (5*t^8.182)/(g1^5*y) + (4*t^8.236)/(g1*y) + (4*g1^3*t^8.291)/y + (4*g1^7*t^8.346)/y + (2*g1^11*t^8.401)/y - t^8.726/(g1^20*y) - t^8.781/(g1^16*y) - t^8.836/(g1^12*y) + t^8.891/(g1^8*y) + (2*t^8.945)/(g1^4*y) - (t^4.473*y)/g1^2 - (t^6.599*y)/g1^11 - (t^6.654*y)/g1^7 - g1*t^6.764*y + (t^7.308*y)/g1^14 + (3*t^7.418*y)/g1^6 + (2*t^7.473*y)/g1^2 + g1^2*t^7.527*y + 2*g1^6*t^7.582*y + g1^10*t^7.637*y + (t^8.017*y)/g1^17 + (t^8.072*y)/g1^13 + (2*t^8.127*y)/g1^9 + (5*t^8.182*y)/g1^5 + (4*t^8.236*y)/g1 + 4*g1^3*t^8.291*y + 4*g1^7*t^8.346*y + 2*g1^11*t^8.401*y - (t^8.726*y)/g1^20 - (t^8.781*y)/g1^16 - (t^8.836*y)/g1^12 + (t^8.891*y)/g1^8 + (2*t^8.945*y)/g1^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4969 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{7}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{8}\phi_{1}q_{1}\tilde{q}_{2}$ | 0.647 | 0.8522 | 0.7592 | [M:[1.0, 1.0269, 0.9462, 1.2567, 0.6895, 0.7433, 0.7702, 0.7164], q:[0.2433, 0.7567], qb:[0.5, 0.5538], phi:[0.4865]] | t^2.068 + t^2.149 + t^2.23 + t^2.311 + t^2.391 + t^2.839 + t^2.919 + t^3. + t^3.081 + t^3.77 + t^4.137 + t^4.217 + 2*t^4.298 + 2*t^4.379 + 4*t^4.46 + 2*t^4.54 + 3*t^4.621 + t^4.702 + 2*t^4.783 + t^4.907 + 2*t^4.988 + 2*t^5.068 + 4*t^5.149 + 3*t^5.23 + 3*t^5.311 + 2*t^5.391 + t^5.472 + t^5.677 + t^5.758 + 2*t^5.839 + 2*t^5.919 - t^6. - t^4.46/y - t^4.46*y | detail |