Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6555 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_1^2$ + $ \phi_1q_2^2$ + $ M_3M_7$ + $ M_8\phi_1q_1\tilde{q}_1$ + $ M_4M_9$ 0.6432 0.8457 0.7606 [X:[], M:[1.0, 1.006, 0.9879, 1.2515, 0.7364, 0.7485, 1.0121, 0.7545, 0.7485], q:[0.2485, 0.7515], qb:[0.5, 0.5121], phi:[0.497]] [X:[], M:[[0], [4], [-8], [1], [-9], [-1], [8], [3], [-1]], q:[[-1], [1]], qb:[[0], [8]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_6$, $ M_9$, $ M_8$, $ q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ M_1$, $ M_2$, $ M_7$, $ \phi_1q_1\tilde{q}_2$, $ M_5^2$, $ M_5M_6$, $ M_5M_9$, $ M_5M_8$, $ M_6^2$, $ M_6M_9$, $ M_9^2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1^2$, $ M_5q_1\tilde{q}_2$, $ M_6M_8$, $ M_8M_9$, $ M_8^2$, $ M_6q_1\tilde{q}_2$, $ M_9q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_8q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_1^2\tilde{q}_2^2$, $ M_5\phi_1q_1^2$, $ M_2M_5$, $ M_6\phi_1q_1^2$, $ M_9\phi_1q_1^2$, $ M_1M_6$, $ M_5M_7$, $ M_1M_9$, $ M_8\phi_1q_1^2$, $ \phi_1q_2\tilde{q}_1$, $ M_2M_6$, $ M_1M_8$, $ M_2M_9$, $ \phi_1q_1^3\tilde{q}_2$, $ M_6M_7$, $ M_2M_8$, $ M_7M_9$, $ \phi_1q_2\tilde{q}_2$, $ M_7M_8$, $ M_2q_1\tilde{q}_2$, $ M_7q_1\tilde{q}_2$, $ M_5\phi_1q_1\tilde{q}_2$ . -2 t^2.21 + 2*t^2.25 + t^2.26 + t^2.28 + t^2.98 + t^3. + t^3.02 + t^3.04 + t^3.77 + t^4.42 + 2*t^4.45 + t^4.47 + 5*t^4.49 + 2*t^4.51 + 4*t^4.53 + t^4.55 + 2*t^4.56 + t^5.19 + 3*t^5.23 + 3*t^5.25 + 4*t^5.26 + 4*t^5.28 + 2*t^5.3 + t^5.32 + t^5.98 - 2*t^6. + 3*t^6.02 + t^6.04 + 2*t^6.05 + t^6.07 + t^6.63 + 2*t^6.66 + t^6.68 + 4*t^6.7 + t^6.72 + 7*t^6.74 + 3*t^6.75 + 8*t^6.77 + 3*t^6.79 + 6*t^6.81 + 2*t^6.83 + 2*t^6.84 + t^7.4 + 3*t^7.44 + 6*t^7.47 + 4*t^7.49 + 7*t^7.51 + 8*t^7.53 + 8*t^7.55 + 6*t^7.56 + 2*t^7.58 + 2*t^7.6 - 3*t^8.21 + t^8.23 - 6*t^8.25 + 3*t^8.26 - t^8.28 + 5*t^8.3 + 3*t^8.32 + 4*t^8.34 + t^8.35 + t^8.84 + 2*t^8.87 + t^8.89 + 4*t^8.91 + 2*t^8.93 + 6*t^8.95 + t^8.96 + 6*t^8.98 - t^4.49/y - t^6.7/y - t^6.74/y - t^6.75/y + (2*t^7.45)/y + t^7.47/y + (2*t^7.49)/y + (2*t^7.51)/y + (2*t^7.53)/y + t^7.55/y + t^8.19/y + t^8.21/y + (4*t^8.23)/y + (5*t^8.25)/y + (4*t^8.26)/y + (5*t^8.28)/y + (2*t^8.3)/y + t^8.32/y - t^8.91/y - t^8.95/y - t^8.96/y + t^8.98/y - t^4.49*y - t^6.7*y - t^6.74*y - t^6.75*y + 2*t^7.45*y + t^7.47*y + 2*t^7.49*y + 2*t^7.51*y + 2*t^7.53*y + t^7.55*y + t^8.19*y + t^8.21*y + 4*t^8.23*y + 5*t^8.25*y + 4*t^8.26*y + 5*t^8.28*y + 2*t^8.3*y + t^8.32*y - t^8.91*y - t^8.95*y - t^8.96*y + t^8.98*y t^2.21/g1^9 + (2*t^2.25)/g1 + g1^3*t^2.26 + g1^7*t^2.28 + t^2.98/g1^4 + t^3. + g1^4*t^3.02 + g1^8*t^3.04 + g1^5*t^3.77 + t^4.42/g1^18 + (2*t^4.45)/g1^10 + t^4.47/g1^6 + (5*t^4.49)/g1^2 + 2*g1^2*t^4.51 + 4*g1^6*t^4.53 + g1^10*t^4.55 + 2*g1^14*t^4.56 + t^5.19/g1^13 + (3*t^5.23)/g1^5 + (3*t^5.25)/g1 + 4*g1^3*t^5.26 + 4*g1^7*t^5.28 + 2*g1^11*t^5.3 + g1^15*t^5.32 + t^5.98/g1^4 - 2*t^6. + 3*g1^4*t^6.02 + g1^8*t^6.04 + 2*g1^12*t^6.05 + g1^16*t^6.07 + t^6.63/g1^27 + (2*t^6.66)/g1^19 + t^6.68/g1^15 + (4*t^6.7)/g1^11 + t^6.72/g1^7 + (7*t^6.74)/g1^3 + 3*g1*t^6.75 + 8*g1^5*t^6.77 + 3*g1^9*t^6.79 + 6*g1^13*t^6.81 + 2*g1^17*t^6.83 + 2*g1^21*t^6.84 + t^7.4/g1^22 + (3*t^7.44)/g1^14 + (6*t^7.47)/g1^6 + (4*t^7.49)/g1^2 + 7*g1^2*t^7.51 + 8*g1^6*t^7.53 + 8*g1^10*t^7.55 + 6*g1^14*t^7.56 + 2*g1^18*t^7.58 + 2*g1^22*t^7.6 - (3*t^8.21)/g1^9 + t^8.23/g1^5 - (6*t^8.25)/g1 + 3*g1^3*t^8.26 - g1^7*t^8.28 + 5*g1^11*t^8.3 + 3*g1^15*t^8.32 + 4*g1^19*t^8.34 + g1^23*t^8.35 + t^8.84/g1^36 + (2*t^8.87)/g1^28 + t^8.89/g1^24 + (4*t^8.91)/g1^20 + (2*t^8.93)/g1^16 + (6*t^8.95)/g1^12 + t^8.96/g1^8 + (6*t^8.98)/g1^4 - t^4.49/(g1^2*y) - t^6.7/(g1^11*y) - t^6.74/(g1^3*y) - (g1*t^6.75)/y + (2*t^7.45)/(g1^10*y) + t^7.47/(g1^6*y) + (2*t^7.49)/(g1^2*y) + (2*g1^2*t^7.51)/y + (2*g1^6*t^7.53)/y + (g1^10*t^7.55)/y + t^8.19/(g1^13*y) + t^8.21/(g1^9*y) + (4*t^8.23)/(g1^5*y) + (5*t^8.25)/(g1*y) + (4*g1^3*t^8.26)/y + (5*g1^7*t^8.28)/y + (2*g1^11*t^8.3)/y + (g1^15*t^8.32)/y - t^8.91/(g1^20*y) - t^8.95/(g1^12*y) - t^8.96/(g1^8*y) + t^8.98/(g1^4*y) - (t^4.49*y)/g1^2 - (t^6.7*y)/g1^11 - (t^6.74*y)/g1^3 - g1*t^6.75*y + (2*t^7.45*y)/g1^10 + (t^7.47*y)/g1^6 + (2*t^7.49*y)/g1^2 + 2*g1^2*t^7.51*y + 2*g1^6*t^7.53*y + g1^10*t^7.55*y + (t^8.19*y)/g1^13 + (t^8.21*y)/g1^9 + (4*t^8.23*y)/g1^5 + (5*t^8.25*y)/g1 + 4*g1^3*t^8.26*y + 5*g1^7*t^8.28*y + 2*g1^11*t^8.3*y + g1^15*t^8.32*y - (t^8.91*y)/g1^20 - (t^8.95*y)/g1^12 - (t^8.96*y)/g1^8 + (t^8.98*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4931 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_1^2$ + $ \phi_1q_2^2$ + $ M_3M_7$ + $ M_8\phi_1q_1\tilde{q}_1$ 0.6241 0.811 0.7696 [X:[], M:[1.0, 1.005, 0.99, 1.2513, 0.7387, 0.7487, 1.01, 0.7538], q:[0.2487, 0.7513], qb:[0.5, 0.51], phi:[0.4975]] t^2.22 + t^2.25 + t^2.26 + t^2.28 + t^2.98 + t^3. + t^3.02 + t^3.03 + t^3.75 + t^3.77 + t^4.43 + t^4.46 + t^4.48 + 3*t^4.49 + t^4.51 + 3*t^4.52 + t^4.54 + 2*t^4.55 + t^5.2 + 2*t^5.23 + 2*t^5.25 + 3*t^5.26 + 3*t^5.28 + 2*t^5.29 + t^5.31 + t^5.97 + t^5.98 - t^6. - t^4.49/y - t^4.49*y detail