Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6534 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{3}M_{7}$ + ${ }M_{8}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{4}M_{9}$ 0.644 0.8474 0.76 [M:[1.0, 1.0137, 0.9726, 1.2534, 0.7192, 0.7466, 1.0274, 0.7329, 0.7466], q:[0.2466, 0.7534], qb:[0.5, 0.5274], phi:[0.4932]] [M:[[0], [4], [-8], [1], [-9], [-1], [8], [-5], [-1]], q:[[-1], [1]], qb:[[0], [8]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{8}$, ${ }M_{6}$, ${ }M_{9}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{5}M_{6}$, ${ }M_{8}^{2}$, ${ }M_{5}M_{9}$, ${ }M_{6}M_{8}$, ${ }M_{8}M_{9}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{9}$, ${ }M_{9}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{8}q_{1}\tilde{q}_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{9}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{8}\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{1}M_{8}$, ${ }M_{6}\phi_{1}q_{1}^{2}$, ${ }M_{9}\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{2}M_{8}$, ${ }M_{1}M_{9}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{6}$, ${ }M_{7}M_{8}$, ${ }M_{2}M_{9}$, ${ }\phi_{1}q_{1}^{3}\tilde{q}_{2}$, ${ }M_{6}M_{7}$, ${ }M_{7}M_{9}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{4}$, ${ }M_{8}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{6}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{9}\phi_{1}q_{1}\tilde{q}_{1}$ ${}$ -2 t^2.158 + t^2.199 + 2*t^2.24 + t^2.322 + t^2.959 + t^3. + t^3.041 + t^3.082 + t^3.719 + t^4.315 + t^4.356 + 3*t^4.397 + 2*t^4.438 + 5*t^4.479 + t^4.521 + 3*t^4.562 + 2*t^4.644 + t^5.116 + t^5.158 + 4*t^5.199 + 3*t^5.24 + 4*t^5.281 + 3*t^5.322 + t^5.363 + t^5.404 + t^5.877 + t^5.918 + 2*t^5.959 - 2*t^6. + 2*t^6.041 + t^6.123 + t^6.164 + t^6.473 + t^6.514 + 3*t^6.555 + 3*t^6.596 + 6*t^6.637 + 5*t^6.678 + 8*t^6.719 + t^6.76 + 6*t^6.801 + 4*t^6.884 + 2*t^6.966 + t^7.274 + t^7.315 + 4*t^7.356 + 3*t^7.397 + 10*t^7.438 + 5*t^7.479 + 7*t^7.521 + 5*t^7.562 + 4*t^7.603 + 4*t^7.644 + t^7.685 + 2*t^7.726 + t^8.034 + t^8.075 + 2*t^8.116 - t^8.158 + 2*t^8.199 - 5*t^8.24 + 3*t^8.281 - 3*t^8.322 + 4*t^8.363 + t^8.404 + t^8.445 + t^8.486 + t^8.63 + t^8.671 + 3*t^8.712 + 3*t^8.754 + 7*t^8.795 + 7*t^8.836 + 10*t^8.877 + 7*t^8.918 + 8*t^8.959 - t^4.479/y - t^6.637/y - t^6.678/y - t^6.719/y + t^7.356/y + (2*t^7.397)/y + (2*t^7.438)/y + (2*t^7.479)/y + t^7.521/y + (2*t^7.562)/y + t^8.116/y + (2*t^8.158)/y + (4*t^8.199)/y + (5*t^8.24)/y + (5*t^8.281)/y + (4*t^8.322)/y + t^8.363/y + t^8.404/y - t^8.795/y - t^8.836/y - t^8.877/y + (2*t^8.959)/y - t^4.479*y - t^6.637*y - t^6.678*y - t^6.719*y + t^7.356*y + 2*t^7.397*y + 2*t^7.438*y + 2*t^7.479*y + t^7.521*y + 2*t^7.562*y + t^8.116*y + 2*t^8.158*y + 4*t^8.199*y + 5*t^8.24*y + 5*t^8.281*y + 4*t^8.322*y + t^8.363*y + t^8.404*y - t^8.795*y - t^8.836*y - t^8.877*y + 2*t^8.959*y t^2.158/g1^9 + t^2.199/g1^5 + (2*t^2.24)/g1 + g1^7*t^2.322 + t^2.959/g1^4 + t^3. + g1^4*t^3.041 + g1^8*t^3.082 + t^3.719/g1^3 + t^4.315/g1^18 + t^4.356/g1^14 + (3*t^4.397)/g1^10 + (2*t^4.438)/g1^6 + (5*t^4.479)/g1^2 + g1^2*t^4.521 + 3*g1^6*t^4.562 + 2*g1^14*t^4.644 + t^5.116/g1^13 + t^5.158/g1^9 + (4*t^5.199)/g1^5 + (3*t^5.24)/g1 + 4*g1^3*t^5.281 + 3*g1^7*t^5.322 + g1^11*t^5.363 + g1^15*t^5.404 + t^5.877/g1^12 + t^5.918/g1^8 + (2*t^5.959)/g1^4 - 2*t^6. + 2*g1^4*t^6.041 + g1^12*t^6.123 + g1^16*t^6.164 + t^6.473/g1^27 + t^6.514/g1^23 + (3*t^6.555)/g1^19 + (3*t^6.596)/g1^15 + (6*t^6.637)/g1^11 + (5*t^6.678)/g1^7 + (8*t^6.719)/g1^3 + g1*t^6.76 + 6*g1^5*t^6.801 + 4*g1^13*t^6.884 + 2*g1^21*t^6.966 + t^7.274/g1^22 + t^7.315/g1^18 + (4*t^7.356)/g1^14 + (3*t^7.397)/g1^10 + (10*t^7.438)/g1^6 + (5*t^7.479)/g1^2 + 7*g1^2*t^7.521 + 5*g1^6*t^7.562 + 4*g1^10*t^7.603 + 4*g1^14*t^7.644 + g1^18*t^7.685 + 2*g1^22*t^7.726 + t^8.034/g1^21 + t^8.075/g1^17 + (2*t^8.116)/g1^13 - t^8.158/g1^9 + (2*t^8.199)/g1^5 - (5*t^8.24)/g1 + 3*g1^3*t^8.281 - 3*g1^7*t^8.322 + 4*g1^11*t^8.363 + g1^15*t^8.404 + g1^19*t^8.445 + g1^23*t^8.486 + t^8.63/g1^36 + t^8.671/g1^32 + (3*t^8.712)/g1^28 + (3*t^8.754)/g1^24 + (7*t^8.795)/g1^20 + (7*t^8.836)/g1^16 + (10*t^8.877)/g1^12 + (7*t^8.918)/g1^8 + (8*t^8.959)/g1^4 - t^4.479/(g1^2*y) - t^6.637/(g1^11*y) - t^6.678/(g1^7*y) - t^6.719/(g1^3*y) + t^7.356/(g1^14*y) + (2*t^7.397)/(g1^10*y) + (2*t^7.438)/(g1^6*y) + (2*t^7.479)/(g1^2*y) + (g1^2*t^7.521)/y + (2*g1^6*t^7.562)/y + t^8.116/(g1^13*y) + (2*t^8.158)/(g1^9*y) + (4*t^8.199)/(g1^5*y) + (5*t^8.24)/(g1*y) + (5*g1^3*t^8.281)/y + (4*g1^7*t^8.322)/y + (g1^11*t^8.363)/y + (g1^15*t^8.404)/y - t^8.795/(g1^20*y) - t^8.836/(g1^16*y) - t^8.877/(g1^12*y) + (2*t^8.959)/(g1^4*y) - (t^4.479*y)/g1^2 - (t^6.637*y)/g1^11 - (t^6.678*y)/g1^7 - (t^6.719*y)/g1^3 + (t^7.356*y)/g1^14 + (2*t^7.397*y)/g1^10 + (2*t^7.438*y)/g1^6 + (2*t^7.479*y)/g1^2 + g1^2*t^7.521*y + 2*g1^6*t^7.562*y + (t^8.116*y)/g1^13 + (2*t^8.158*y)/g1^9 + (4*t^8.199*y)/g1^5 + (5*t^8.24*y)/g1 + 5*g1^3*t^8.281*y + 4*g1^7*t^8.322*y + g1^11*t^8.363*y + g1^15*t^8.404*y - (t^8.795*y)/g1^20 - (t^8.836*y)/g1^16 - (t^8.877*y)/g1^12 + (2*t^8.959*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4933 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{3}M_{7}$ + ${ }M_{8}\phi_{1}q_{1}\tilde{q}_{2}$ 0.6249 0.8124 0.7692 [M:[1.0, 1.0127, 0.9745, 1.2532, 0.7213, 0.7468, 1.0255, 0.7341], q:[0.2468, 0.7532], qb:[0.5, 0.5255], phi:[0.4936]] t^2.164 + t^2.202 + t^2.24 + t^2.317 + t^2.962 + t^3. + t^3.038 + t^3.076 + t^3.721 + t^3.76 + t^4.328 + t^4.366 + 2*t^4.404 + t^4.443 + 3*t^4.481 + t^4.519 + 2*t^4.557 + 2*t^4.634 + t^5.126 + t^5.164 + 3*t^5.202 + 2*t^5.24 + 3*t^5.279 + 2*t^5.317 + t^5.355 + t^5.393 + t^5.885 + 2*t^5.924 + 2*t^5.962 - t^6. - t^4.481/y - t^4.481*y detail