Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6485 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}M_{6}$ + ${ }M_{1}M_{7}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ + ${ }M_{9}\phi_{1}q_{1}q_{2}$ | 0.6973 | 0.9012 | 0.7738 | [M:[1.1923, 0.7461, 0.8077, 1.1307, 0.8693, 1.1307, 0.8077, 0.7693, 0.7077], q:[0.4346, 0.373], qb:[0.7577, 0.4962], phi:[0.4846]] | [M:[[10], [-34], [-10], [-14], [14], [-14], [-10], [40], [16]], q:[[7], [-17]], qb:[[3], [31]], phi:[[-6]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{9}$, ${ }M_{2}$, ${ }M_{8}$, ${ }M_{3}$, ${ }M_{7}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{6}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{9}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{9}$, ${ }M_{8}M_{9}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{8}$, ${ }M_{3}M_{9}$, ${ }M_{7}M_{9}$, ${ }M_{8}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{7}$, ${ }M_{3}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{9}q_{1}\tilde{q}_{2}$, ${ }M_{9}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{8}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{4}M_{9}$, ${ }M_{6}M_{9}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{8}$, ${ }M_{6}M_{8}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}^{4}$ | ${}$ | -3 | t^2.123 + t^2.238 + t^2.308 + 2*t^2.423 + t^2.793 + t^2.908 + 2*t^3.392 + 2*t^4.062 + 2*t^4.246 + t^4.361 + 2*t^4.431 + t^4.477 + 3*t^4.546 + t^4.616 + 2*t^4.661 + 2*t^4.731 + 3*t^4.846 + t^4.916 + 2*t^5.031 + t^5.1 + t^5.146 + 3*t^5.216 + 2*t^5.331 + 2*t^5.515 + t^5.585 + t^5.63 + 3*t^5.7 + 3*t^5.815 - 3*t^6. + t^6.185 + 3*t^6.3 + 3*t^6.37 + 4*t^6.485 + 3*t^6.554 + t^6.6 + 4*t^6.669 + t^6.715 + 2*t^6.739 + 4*t^6.784 + 6*t^6.854 + 2*t^6.9 + t^6.924 + 5*t^6.969 + 4*t^7.039 + 2*t^7.084 + 3*t^7.154 + 2*t^7.224 + 3*t^7.269 + 4*t^7.339 + t^7.384 + t^7.408 + 5*t^7.454 + 2*t^7.523 + 2*t^7.569 + 5*t^7.639 + t^7.708 + 3*t^7.754 + 3*t^7.823 + t^7.869 + t^7.893 + 3*t^7.938 + 4*t^8.008 + t^8.054 + 2*t^8.123 + t^8.238 - 2*t^8.308 + t^8.378 - 5*t^8.423 + 5*t^8.493 + 2*t^8.538 + 3*t^8.608 + 5*t^8.677 + 5*t^8.723 + 2*t^8.793 + t^8.838 + 4*t^8.862 + 4*t^8.908 + t^8.953 + 6*t^8.977 - t^4.454/y - t^6.577/y - t^6.692/y - t^6.762/y - t^6.877/y + t^7.062/y + t^7.431/y + (4*t^7.546)/y + (2*t^7.661)/y + (2*t^7.731)/y + t^7.916/y + (3*t^8.031)/y + t^8.1/y + (2*t^8.146)/y + (4*t^8.216)/y + (3*t^8.331)/y + (2*t^8.515)/y + (2*t^8.63)/y + (2*t^8.7)/y + (3*t^8.815)/y - t^8.885/y - t^8.93/y - t^4.454*y - t^6.577*y - t^6.692*y - t^6.762*y - t^6.877*y + t^7.062*y + t^7.431*y + 4*t^7.546*y + 2*t^7.661*y + 2*t^7.731*y + t^7.916*y + 3*t^8.031*y + t^8.1*y + 2*t^8.146*y + 4*t^8.216*y + 3*t^8.331*y + 2*t^8.515*y + 2*t^8.63*y + 2*t^8.7*y + 3*t^8.815*y - t^8.885*y - t^8.93*y | g1^16*t^2.123 + t^2.238/g1^34 + g1^40*t^2.308 + (2*t^2.423)/g1^10 + g1^38*t^2.793 + t^2.908/g1^12 + (2*t^3.392)/g1^14 + 2*g1^8*t^4.062 + 2*g1^32*t^4.246 + t^4.361/g1^18 + 2*g1^56*t^4.431 + t^4.477/g1^68 + 3*g1^6*t^4.546 + g1^80*t^4.616 + (2*t^4.661)/g1^44 + 2*g1^30*t^4.731 + (3*t^4.846)/g1^20 + g1^54*t^4.916 + 2*g1^4*t^5.031 + g1^78*t^5.1 + t^5.146/g1^46 + 3*g1^28*t^5.216 + (2*t^5.331)/g1^22 + 2*g1^2*t^5.515 + g1^76*t^5.585 + t^5.63/g1^48 + 3*g1^26*t^5.7 + (3*t^5.815)/g1^24 - 3*t^6. + g1^24*t^6.185 + (3*t^6.3)/g1^26 + 3*g1^48*t^6.37 + (4*t^6.485)/g1^2 + 3*g1^72*t^6.554 + t^6.6/g1^52 + 4*g1^22*t^6.669 + t^6.715/g1^102 + 2*g1^96*t^6.739 + (4*t^6.784)/g1^28 + 6*g1^46*t^6.854 + (2*t^6.9)/g1^78 + g1^120*t^6.924 + (5*t^6.969)/g1^4 + 4*g1^70*t^7.039 + (2*t^7.084)/g1^54 + 3*g1^20*t^7.154 + 2*g1^94*t^7.224 + (3*t^7.269)/g1^30 + 4*g1^44*t^7.339 + t^7.384/g1^80 + g1^118*t^7.408 + (5*t^7.454)/g1^6 + 2*g1^68*t^7.523 + (2*t^7.569)/g1^56 + 5*g1^18*t^7.639 + g1^92*t^7.708 + (3*t^7.754)/g1^32 + 3*g1^42*t^7.823 + t^7.869/g1^82 + g1^116*t^7.893 + (3*t^7.938)/g1^8 + 4*g1^66*t^8.008 + t^8.054/g1^58 + 2*g1^16*t^8.123 + t^8.238/g1^34 - 2*g1^40*t^8.308 + g1^114*t^8.378 - (5*t^8.423)/g1^10 + 5*g1^64*t^8.493 + (2*t^8.538)/g1^60 + 3*g1^14*t^8.608 + 5*g1^88*t^8.677 + (5*t^8.723)/g1^36 + 2*g1^38*t^8.793 + t^8.838/g1^86 + 4*g1^112*t^8.862 + (4*t^8.908)/g1^12 + t^8.953/g1^136 + 6*g1^62*t^8.977 - t^4.454/(g1^6*y) - (g1^10*t^6.577)/y - t^6.692/(g1^40*y) - (g1^34*t^6.762)/y - t^6.877/(g1^16*y) + (g1^8*t^7.062)/y + (g1^56*t^7.431)/y + (4*g1^6*t^7.546)/y + (2*t^7.661)/(g1^44*y) + (2*g1^30*t^7.731)/y + (g1^54*t^7.916)/y + (3*g1^4*t^8.031)/y + (g1^78*t^8.1)/y + (2*t^8.146)/(g1^46*y) + (4*g1^28*t^8.216)/y + (3*t^8.331)/(g1^22*y) + (2*g1^2*t^8.515)/y + (2*t^8.63)/(g1^48*y) + (2*g1^26*t^8.7)/y + (3*t^8.815)/(g1^24*y) - (g1^50*t^8.885)/y - t^8.93/(g1^74*y) - (t^4.454*y)/g1^6 - g1^10*t^6.577*y - (t^6.692*y)/g1^40 - g1^34*t^6.762*y - (t^6.877*y)/g1^16 + g1^8*t^7.062*y + g1^56*t^7.431*y + 4*g1^6*t^7.546*y + (2*t^7.661*y)/g1^44 + 2*g1^30*t^7.731*y + g1^54*t^7.916*y + 3*g1^4*t^8.031*y + g1^78*t^8.1*y + (2*t^8.146*y)/g1^46 + 4*g1^28*t^8.216*y + (3*t^8.331*y)/g1^22 + 2*g1^2*t^8.515*y + (2*t^8.63*y)/g1^48 + 2*g1^26*t^8.7*y + (3*t^8.815*y)/g1^24 - g1^50*t^8.885*y - (t^8.93*y)/g1^74 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4883 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}M_{6}$ + ${ }M_{1}M_{7}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ | 0.677 | 0.8625 | 0.7849 | [M:[1.1933, 0.7428, 0.8067, 1.1294, 0.8706, 1.1294, 0.8067, 0.7732], q:[0.4353, 0.3714], qb:[0.758, 0.4993], phi:[0.484]] | t^2.228 + t^2.32 + 2*t^2.42 + t^2.804 + t^2.904 + 2*t^3.388 + t^3.872 + 2*t^4.064 + t^4.256 + t^4.448 + t^4.457 + t^4.548 + t^4.639 + 2*t^4.648 + 2*t^4.74 + 3*t^4.84 + t^5.032 + t^5.123 + t^5.132 + 3*t^5.224 + 2*t^5.324 + t^5.607 + t^5.616 + 3*t^5.708 + 3*t^5.808 - 3*t^6. - t^4.452/y - t^4.452*y | detail |