Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6394 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}M_{8}$ + ${ }M_{9}\phi_{1}q_{2}^{2}$ 0.7349 0.95 0.7735 [M:[0.955, 0.8141, 0.955, 0.8141, 1.1859, 0.7436, 0.7436, 0.8141, 0.7436], q:[0.638, 0.407], qb:[0.407, 0.7789], phi:[0.4423]] [M:[[-22], [-2], [-22], [-2], [2], [8], [8], [-2], [8]], q:[[23], [-1]], qb:[[-1], [3]], phi:[[-6]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{7}$, ${ }M_{9}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{6}M_{9}$, ${ }M_{7}M_{9}$, ${ }M_{9}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{4}M_{7}$, ${ }M_{6}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{2}M_{9}$, ${ }M_{4}M_{9}$, ${ }M_{8}M_{9}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{8}$, ${ }M_{4}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{9}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{7}$, ${ }M_{1}M_{9}$, ${ }M_{3}M_{9}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{8}$, ${ }M_{3}M_{8}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$ ${}$ -5 3*t^2.231 + 3*t^2.442 + t^2.654 + 2*t^2.865 + t^4.251 + 8*t^4.462 + 9*t^4.673 + 9*t^4.885 + 9*t^5.096 + t^5.155 + 5*t^5.307 + 2*t^5.519 + 3*t^5.73 - 5*t^6. - 2*t^6.211 - t^6.423 + 3*t^6.481 - 2*t^6.634 + 16*t^6.693 + 22*t^6.904 + 23*t^7.115 + 29*t^7.327 + 3*t^7.386 + 20*t^7.538 + 2*t^7.597 + 15*t^7.749 - t^7.808 + 14*t^7.961 - 4*t^8.02 + 8*t^8.172 - 19*t^8.231 + 3*t^8.384 - 21*t^8.442 + 4*t^8.595 - 14*t^8.654 + 6*t^8.712 - 18*t^8.865 + 26*t^8.924 - t^4.327/y - (3*t^6.558)/y - (2*t^6.769)/y - t^6.98/y - (2*t^7.192)/y + (5*t^7.462)/y + (10*t^7.673)/y + (8*t^7.885)/y + (12*t^8.096)/y + (6*t^8.307)/y + (2*t^8.519)/y + t^8.73/y - (6*t^8.789)/y - t^4.327*y - 3*t^6.558*y - 2*t^6.769*y - t^6.98*y - 2*t^7.192*y + 5*t^7.462*y + 10*t^7.673*y + 8*t^7.885*y + 12*t^8.096*y + 6*t^8.307*y + 2*t^8.519*y + t^8.73*y - 6*t^8.789*y 3*g1^8*t^2.231 + (3*t^2.442)/g1^2 + t^2.654/g1^12 + (2*t^2.865)/g1^22 + g1^26*t^4.251 + 8*g1^16*t^4.462 + 9*g1^6*t^4.673 + (9*t^4.885)/g1^4 + (9*t^5.096)/g1^14 + g1^40*t^5.155 + (5*t^5.307)/g1^24 + (2*t^5.519)/g1^34 + (3*t^5.73)/g1^44 - 5*t^6. - (2*t^6.211)/g1^10 - t^6.423/g1^20 + 3*g1^34*t^6.481 - (2*t^6.634)/g1^30 + 16*g1^24*t^6.693 + 22*g1^14*t^6.904 + 23*g1^4*t^7.115 + (29*t^7.327)/g1^6 + 3*g1^48*t^7.386 + (20*t^7.538)/g1^16 + 2*g1^38*t^7.597 + (15*t^7.749)/g1^26 - g1^28*t^7.808 + (14*t^7.961)/g1^36 - 4*g1^18*t^8.02 + (8*t^8.172)/g1^46 - 19*g1^8*t^8.231 + (3*t^8.384)/g1^56 - (21*t^8.442)/g1^2 + (4*t^8.595)/g1^66 - (14*t^8.654)/g1^12 + 6*g1^42*t^8.712 - (18*t^8.865)/g1^22 + 26*g1^32*t^8.924 - t^4.327/(g1^6*y) - (3*g1^2*t^6.558)/y - (2*t^6.769)/(g1^8*y) - t^6.98/(g1^18*y) - (2*t^7.192)/(g1^28*y) + (5*g1^16*t^7.462)/y + (10*g1^6*t^7.673)/y + (8*t^7.885)/(g1^4*y) + (12*t^8.096)/(g1^14*y) + (6*t^8.307)/(g1^24*y) + (2*t^8.519)/(g1^34*y) + t^8.73/(g1^44*y) - (6*g1^10*t^8.789)/y - (t^4.327*y)/g1^6 - 3*g1^2*t^6.558*y - (2*t^6.769*y)/g1^8 - (t^6.98*y)/g1^18 - (2*t^7.192*y)/g1^28 + 5*g1^16*t^7.462*y + 10*g1^6*t^7.673*y + (8*t^7.885*y)/g1^4 + (12*t^8.096*y)/g1^14 + (6*t^8.307*y)/g1^24 + (2*t^8.519*y)/g1^34 + (t^8.73*y)/g1^44 - 6*g1^10*t^8.789*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4773 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}M_{8}$ 0.7156 0.9148 0.7823 [M:[0.9474, 0.8134, 0.9474, 0.8134, 1.1866, 0.7464, 0.7464, 0.8134], q:[0.6459, 0.4067], qb:[0.4067, 0.7799], phi:[0.4402]] 2*t^2.239 + 3*t^2.44 + t^2.641 + 2*t^2.842 + t^3.761 + t^4.277 + 5*t^4.478 + 6*t^4.679 + 8*t^4.88 + 7*t^5.081 + t^5.196 + 5*t^5.282 + 2*t^5.483 + 3*t^5.684 - 3*t^6. - t^4.321/y - t^4.321*y detail