Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6378 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{8}$ + ${ }M_{9}\phi_{1}q_{2}^{2}$ | 0.7037 | 0.8958 | 0.7856 | [M:[0.9612, 0.8147, 0.9612, 0.8147, 1.1853, 0.7414, 0.7414, 1.1853, 0.7414], q:[0.6315, 0.4073], qb:[0.4073, 0.778], phi:[0.444]] | [M:[[-22], [-2], [-22], [-2], [2], [8], [8], [2], [8]], q:[[23], [-1]], qb:[[-1], [3]], phi:[[-6]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{7}$, ${ }M_{9}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{5}$, ${ }M_{8}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{6}M_{9}$, ${ }M_{7}M_{9}$, ${ }M_{9}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{4}M_{9}$, ${ }M_{4}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{9}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{7}$, ${ }M_{1}M_{9}$, ${ }M_{3}M_{9}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{6}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{5}M_{9}$, ${ }M_{8}M_{9}$ | ${}M_{4}M_{8}$ | -3 | 3*t^2.224 + t^2.444 + t^2.664 + 2*t^2.884 + 2*t^3.556 + t^4.229 + 8*t^4.448 + 3*t^4.668 + 4*t^4.888 + 7*t^5.108 + t^5.121 + t^5.328 + 2*t^5.547 + 3*t^5.767 + 6*t^5.78 - 3*t^6. + 3*t^6.44 + 3*t^6.453 - 2*t^6.659 + 14*t^6.672 + 6*t^6.892 + 11*t^7.112 + 14*t^7.332 + 3*t^7.345 + 3*t^7.552 + 7*t^7.771 + t^7.785 + 10*t^7.991 + 12*t^8.004 + 2*t^8.211 - 13*t^8.224 + 3*t^8.431 - 3*t^8.444 + 4*t^8.651 + 4*t^8.664 + 8*t^8.677 - 14*t^8.884 + 20*t^8.897 - t^4.332/y - (3*t^6.556)/y - t^6.996/y - (2*t^7.215)/y + (5*t^7.448)/y + (4*t^7.668)/y + (3*t^7.888)/y + (10*t^8.108)/y + (2*t^8.328)/y + (2*t^8.547)/y + t^8.767/y - t^4.332*y - 3*t^6.556*y - t^6.996*y - 2*t^7.215*y + 5*t^7.448*y + 4*t^7.668*y + 3*t^7.888*y + 10*t^8.108*y + 2*t^8.328*y + 2*t^8.547*y + t^8.767*y | 3*g1^8*t^2.224 + t^2.444/g1^2 + t^2.664/g1^12 + (2*t^2.884)/g1^22 + 2*g1^2*t^3.556 + g1^26*t^4.229 + 8*g1^16*t^4.448 + 3*g1^6*t^4.668 + (4*t^4.888)/g1^4 + (7*t^5.108)/g1^14 + g1^40*t^5.121 + t^5.328/g1^24 + (2*t^5.547)/g1^34 + (3*t^5.767)/g1^44 + 6*g1^10*t^5.78 - 3*t^6. + (3*t^6.44)/g1^20 + 3*g1^34*t^6.453 - (2*t^6.659)/g1^30 + 14*g1^24*t^6.672 + 6*g1^14*t^6.892 + 11*g1^4*t^7.112 + (14*t^7.332)/g1^6 + 3*g1^48*t^7.345 + (3*t^7.552)/g1^16 + (7*t^7.771)/g1^26 + g1^28*t^7.785 + (10*t^7.991)/g1^36 + 12*g1^18*t^8.004 + (2*t^8.211)/g1^46 - 13*g1^8*t^8.224 + (3*t^8.431)/g1^56 - (3*t^8.444)/g1^2 + (4*t^8.651)/g1^66 + (4*t^8.664)/g1^12 + 8*g1^42*t^8.677 - (14*t^8.884)/g1^22 + 20*g1^32*t^8.897 - t^4.332/(g1^6*y) - (3*g1^2*t^6.556)/y - t^6.996/(g1^18*y) - (2*t^7.215)/(g1^28*y) + (5*g1^16*t^7.448)/y + (4*g1^6*t^7.668)/y + (3*t^7.888)/(g1^4*y) + (10*t^8.108)/(g1^14*y) + (2*t^8.328)/(g1^24*y) + (2*t^8.547)/(g1^34*y) + t^8.767/(g1^44*y) - (t^4.332*y)/g1^6 - 3*g1^2*t^6.556*y - (t^6.996*y)/g1^18 - (2*t^7.215*y)/g1^28 + 5*g1^16*t^7.448*y + 4*g1^6*t^7.668*y + (3*t^7.888*y)/g1^4 + (10*t^8.108*y)/g1^14 + (2*t^8.328*y)/g1^24 + (2*t^8.547*y)/g1^34 + (t^8.767*y)/g1^44 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4767 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{8}$ | 0.6843 | 0.8602 | 0.7955 | [M:[0.9538, 0.814, 0.9538, 0.814, 1.186, 0.7441, 0.7441, 1.186], q:[0.6392, 0.407], qb:[0.407, 0.779], phi:[0.4419]] | 2*t^2.232 + t^2.442 + t^2.652 + 2*t^2.861 + 2*t^3.558 + t^3.768 + t^4.255 + 5*t^4.464 + 2*t^4.674 + 3*t^4.884 + 5*t^5.094 + t^5.161 + t^5.303 + 2*t^5.513 + 3*t^5.723 + 4*t^5.79 - t^6. - t^4.326/y - t^4.326*y | detail |