Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6377 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{8}$ + ${ }M_{1}M_{9}$ 0.6824 0.8588 0.7946 [M:[1.0045, 0.8186, 1.0045, 0.8186, 1.1814, 0.7256, 0.7256, 1.1814, 0.9955], q:[0.5862, 0.4093], qb:[0.4093, 0.7721], phi:[0.4558]] [M:[[-22], [-2], [-22], [-2], [2], [8], [8], [2], [22]], q:[[23], [-1]], qb:[[-1], [3]], phi:[[-6]]] 1 {a: 14746/21609, c: 296941/345744, M1: 443/441, M2: 361/441, M3: 443/441, M4: 361/441, M5: 521/441, M6: 320/441, M7: 320/441, M8: 521/441, M9: 439/441, q1: 517/882, q2: 361/882, qb1: 361/882, qb2: 227/294, phi1: 67/147}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{7}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{9}$, ${ }M_{3}$, ${ }M_{5}$, ${ }M_{8}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{6}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}M_{9}$, ${ }M_{7}M_{9}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}M_{9}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{6}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{9}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{9}^{2}$ ${}M_{4}M_{8}$, ${ }M_{3}M_{9}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{7}\phi_{1}q_{2}^{2}$ 0 2*t^2.177 + t^2.456 + t^2.735 + t^2.986 + t^3.014 + 2*t^3.544 + t^3.823 + t^4.075 + 5*t^4.354 + 2*t^4.633 + t^4.884 + 3*t^4.912 + 2*t^5.163 + 3*t^5.19 + t^5.442 + 5*t^5.721 + t^5.748 + t^5.973 + t^6.027 + 2*t^6.252 + t^6.279 + 8*t^6.531 + 2*t^6.558 + 4*t^6.81 - t^6.837 + 3*t^7.061 + 6*t^7.088 + 5*t^7.34 + 4*t^7.367 + 3*t^7.619 + t^7.646 + t^7.871 + 9*t^7.898 + 2*t^7.925 + 2*t^8.15 - 2*t^8.177 + 2*t^8.204 + 6*t^8.429 - t^8.456 + t^8.483 + 12*t^8.707 + t^8.735 + t^8.762 + 2*t^8.959 + 2*t^8.986 - t^4.367/y - (2*t^6.544)/y - t^7.102/y + (2*t^7.354)/y - t^7.381/y + (3*t^7.633)/y + (2*t^7.912)/y + (2*t^8.163)/y + (5*t^8.19)/y + t^8.442/y + t^8.469/y + (2*t^8.721)/y + t^8.748/y - t^4.367*y - 2*t^6.544*y - t^7.102*y + 2*t^7.354*y - t^7.381*y + 3*t^7.633*y + 2*t^7.912*y + 2*t^8.163*y + 5*t^8.19*y + t^8.442*y + t^8.469*y + 2*t^8.721*y + t^8.748*y 2*g1^8*t^2.177 + t^2.456/g1^2 + t^2.735/g1^12 + g1^22*t^2.986 + t^3.014/g1^22 + 2*g1^2*t^3.544 + t^3.823/g1^8 + g1^26*t^4.075 + 5*g1^16*t^4.354 + 2*g1^6*t^4.633 + g1^40*t^4.884 + (3*t^4.912)/g1^4 + 2*g1^30*t^5.163 + (3*t^5.19)/g1^14 + g1^20*t^5.442 + 5*g1^10*t^5.721 + t^5.748/g1^34 + g1^44*t^5.973 + t^6.027/g1^44 + 2*g1^34*t^6.252 + t^6.279/g1^10 + 8*g1^24*t^6.531 + (2*t^6.558)/g1^20 + 4*g1^14*t^6.81 - t^6.837/g1^30 + 3*g1^48*t^7.061 + 6*g1^4*t^7.088 + 5*g1^38*t^7.34 + (4*t^7.367)/g1^6 + 3*g1^28*t^7.619 + t^7.646/g1^16 + g1^62*t^7.871 + 9*g1^18*t^7.898 + (2*t^7.925)/g1^26 + 2*g1^52*t^8.15 - 2*g1^8*t^8.177 + (2*t^8.204)/g1^36 + 6*g1^42*t^8.429 - t^8.456/g1^2 + t^8.483/g1^46 + 12*g1^32*t^8.707 + t^8.735/g1^12 + t^8.762/g1^56 + 2*g1^66*t^8.959 + 2*g1^22*t^8.986 - t^4.367/(g1^6*y) - (2*g1^2*t^6.544)/y - t^7.102/(g1^18*y) + (2*g1^16*t^7.354)/y - t^7.381/(g1^28*y) + (3*g1^6*t^7.633)/y + (2*t^7.912)/(g1^4*y) + (2*g1^30*t^8.163)/y + (5*t^8.19)/(g1^14*y) + (g1^20*t^8.442)/y + t^8.469/(g1^24*y) + (2*g1^10*t^8.721)/y + t^8.748/(g1^34*y) - (t^4.367*y)/g1^6 - 2*g1^2*t^6.544*y - (t^7.102*y)/g1^18 + 2*g1^16*t^7.354*y - (t^7.381*y)/g1^28 + 3*g1^6*t^7.633*y + (2*t^7.912*y)/g1^4 + 2*g1^30*t^8.163*y + (5*t^8.19*y)/g1^14 + g1^20*t^8.442*y + (t^8.469*y)/g1^24 + 2*g1^10*t^8.721*y + (t^8.748*y)/g1^34


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4767 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{8}$ 0.6843 0.8602 0.7955 [M:[0.9538, 0.814, 0.9538, 0.814, 1.186, 0.7441, 0.7441, 1.186], q:[0.6392, 0.407], qb:[0.407, 0.779], phi:[0.4419]] 2*t^2.232 + t^2.442 + t^2.652 + 2*t^2.861 + 2*t^3.558 + t^3.768 + t^4.255 + 5*t^4.464 + 2*t^4.674 + 3*t^4.884 + 5*t^5.094 + t^5.161 + t^5.303 + 2*t^5.513 + 3*t^5.723 + 4*t^5.79 - t^6. - t^4.326/y - t^4.326*y detail