Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
6369 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{2}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{3}M_{7}$ + ${ }M_{8}\phi_{1}^{2}$ + ${ }M_{5}M_{9}$ 0.684 0.8556 0.7995 [M:[1.0362, 0.7738, 0.9706, 0.8394, 1.1606, 0.7738, 1.0294, 1.095, 0.8394], q:[0.5769, 0.3869], qb:[0.4525, 0.7738], phi:[0.4525]] [M:[[-18], [2], [-13], [-3], [3], [2], [13], [8], [-3]], q:[[17], [1]], qb:[[-4], [2]], phi:[[-4]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{9}$, ${ }M_{7}$, ${ }M_{1}$, ${ }M_{8}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}M_{6}$, ${ }M_{2}M_{9}$, ${ }M_{6}M_{9}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{9}$, ${ }M_{9}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{7}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{2}M_{8}$, ${ }M_{6}M_{8}$, ${ }M_{7}M_{9}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{9}$, ${ }M_{4}M_{8}$, ${ }M_{8}M_{9}$ ${}$ -3 2*t^2.321 + 2*t^2.518 + t^3.088 + t^3.109 + t^3.285 + t^3.876 + t^4.052 + t^4.072 + t^4.249 + t^4.446 + 3*t^4.643 + t^4.819 + 4*t^4.839 + 3*t^5.036 + 2*t^5.41 + t^5.43 + 4*t^5.606 + t^5.627 + t^5.803 - 3*t^6. + t^6.177 + t^6.197 + t^6.217 + 2*t^6.373 + 4*t^6.394 + 3*t^6.57 + t^6.59 + 2*t^6.767 - t^6.787 + 4*t^6.964 + 3*t^7.14 + 6*t^7.161 + t^7.181 + 3*t^7.337 + 4*t^7.357 + t^7.534 + 3*t^7.554 + t^7.731 + t^7.751 + t^7.907 + 6*t^7.928 + t^7.948 + t^8.104 + 4*t^8.124 + 2*t^8.145 - 5*t^8.321 + 2*t^8.498 - 5*t^8.518 + 2*t^8.538 + 5*t^8.695 + 3*t^8.715 + t^8.735 + t^8.871 + 5*t^8.891 + 4*t^8.912 - t^4.357/y - (2*t^6.679)/y - t^6.876/y + t^7.249/y - t^7.466/y + t^7.643/y + (5*t^7.839)/y + (3*t^8.036)/y + (2*t^8.41)/y + (2*t^8.43)/y + (4*t^8.606)/y + (2*t^8.627)/y + (2*t^8.803)/y - t^4.357*y - 2*t^6.679*y - t^6.876*y + t^7.249*y - t^7.466*y + t^7.643*y + 5*t^7.839*y + 3*t^8.036*y + 2*t^8.41*y + 2*t^8.43*y + 4*t^8.606*y + 2*t^8.627*y + 2*t^8.803*y 2*g1^2*t^2.321 + (2*t^2.518)/g1^3 + g1^13*t^3.088 + t^3.109/g1^18 + g1^8*t^3.285 + t^3.876/g1^7 + g1^19*t^4.052 + t^4.072/g1^12 + g1^14*t^4.249 + g1^9*t^4.446 + 3*g1^4*t^4.643 + g1^30*t^4.819 + (4*t^4.839)/g1 + (3*t^5.036)/g1^6 + 2*g1^15*t^5.41 + t^5.43/g1^16 + 4*g1^10*t^5.606 + t^5.627/g1^21 + g1^5*t^5.803 - 3*t^6. + g1^26*t^6.177 + t^6.197/g1^5 + t^6.217/g1^36 + 2*g1^21*t^6.373 + (4*t^6.394)/g1^10 + 3*g1^16*t^6.57 + t^6.59/g1^15 + 2*g1^11*t^6.767 - t^6.787/g1^20 + 4*g1^6*t^6.964 + 3*g1^32*t^7.14 + 6*g1*t^7.161 + t^7.181/g1^30 + 3*g1^27*t^7.337 + (4*t^7.357)/g1^4 + g1^22*t^7.534 + (3*t^7.554)/g1^9 + g1^17*t^7.731 + t^7.751/g1^14 + g1^43*t^7.907 + 6*g1^12*t^7.928 + t^7.948/g1^19 + g1^38*t^8.104 + 4*g1^7*t^8.124 + (2*t^8.145)/g1^24 - 5*g1^2*t^8.321 + 2*g1^28*t^8.498 - (5*t^8.518)/g1^3 + (2*t^8.538)/g1^34 + 5*g1^23*t^8.695 + (3*t^8.715)/g1^8 + t^8.735/g1^39 + g1^49*t^8.871 + 5*g1^18*t^8.891 + (4*t^8.912)/g1^13 - t^4.357/(g1^4*y) - (2*t^6.679)/(g1^2*y) - t^6.876/(g1^7*y) + (g1^14*t^7.249)/y - t^7.466/(g1^22*y) + (g1^4*t^7.643)/y + (5*t^7.839)/(g1*y) + (3*t^8.036)/(g1^6*y) + (2*g1^15*t^8.41)/y + (2*t^8.43)/(g1^16*y) + (4*g1^10*t^8.606)/y + (2*t^8.627)/(g1^21*y) + (2*g1^5*t^8.803)/y - (t^4.357*y)/g1^4 - (2*t^6.679*y)/g1^2 - (t^6.876*y)/g1^7 + g1^14*t^7.249*y - (t^7.466*y)/g1^22 + g1^4*t^7.643*y + (5*t^7.839*y)/g1 + (3*t^8.036*y)/g1^6 + 2*g1^15*t^8.41*y + (2*t^8.43*y)/g1^16 + 4*g1^10*t^8.606*y + (2*t^8.627*y)/g1^21 + 2*g1^5*t^8.803*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4766 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{2}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{3}M_{7}$ + ${ }M_{8}\phi_{1}^{2}$ 0.6702 0.8321 0.8054 [M:[1.0445, 0.7728, 0.9766, 0.8408, 1.1592, 0.7728, 1.0234, 1.0913], q:[0.5691, 0.3864], qb:[0.4543, 0.7728], phi:[0.4543]] 2*t^2.318 + t^2.522 + t^3.07 + t^3.134 + t^3.274 + t^3.478 + t^3.885 + t^4.026 + t^4.089 + t^4.229 + t^4.433 + 3*t^4.637 + t^4.777 + 2*t^4.841 + t^5.045 + 2*t^5.389 + t^5.452 + 3*t^5.592 + 2*t^5.796 - 2*t^6. - t^4.363/y - t^4.363*y detail